sraghavanvenkat0714 commited on
Commit
8af68ff
·
verified ·
1 Parent(s): 5887739

Model save

Browse files
Files changed (2) hide show
  1. README.md +86 -0
  2. generation_config.json +15 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: facebook/bart-large-cnn
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - samsum
9
+ metrics:
10
+ - rouge
11
+ model-index:
12
+ - name: bart-large-cnn-samsum
13
+ results:
14
+ - task:
15
+ name: Sequence-to-sequence Language Modeling
16
+ type: text2text-generation
17
+ dataset:
18
+ name: samsum
19
+ type: samsum
20
+ config: samsum
21
+ split: validation
22
+ args: samsum
23
+ metrics:
24
+ - name: Rouge1
25
+ type: rouge
26
+ value: 0.412
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # bart-large-cnn-samsum
33
+
34
+ This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the samsum dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.3108
37
+ - Rouge1: 0.412
38
+ - Rouge2: 0.2104
39
+ - Rougel: 0.3182
40
+ - Rougelsum: 0.3185
41
+ - Gen Len: 60.1039
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
+ - train_batch_size: 4
62
+ - eval_batch_size: 4
63
+ - seed: 42
64
+ - gradient_accumulation_steps: 16
65
+ - total_train_batch_size: 64
66
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
+ - lr_scheduler_type: linear
68
+ - lr_scheduler_warmup_steps: 200
69
+ - num_epochs: 3
70
+ - mixed_precision_training: Native AMP
71
+
72
+ ### Training results
73
+
74
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
75
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
76
+ | 0.2975 | 0.8689 | 200 | 0.3024 | 0.4106 | 0.2109 | 0.3165 | 0.3168 | 60.5501 |
77
+ | 0.2286 | 1.7377 | 400 | 0.3012 | 0.4098 | 0.2106 | 0.3175 | 0.3179 | 60.1993 |
78
+ | 0.1752 | 2.6066 | 600 | 0.3108 | 0.412 | 0.2104 | 0.3182 | 0.3185 | 60.1039 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.44.2
84
+ - Pytorch 2.4.1+cu121
85
+ - Datasets 3.0.1
86
+ - Tokenizers 0.19.1
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 0,
3
+ "decoder_start_token_id": 2,
4
+ "early_stopping": true,
5
+ "eos_token_id": 2,
6
+ "forced_bos_token_id": 0,
7
+ "forced_eos_token_id": 2,
8
+ "length_penalty": 2.0,
9
+ "max_length": 142,
10
+ "min_length": 56,
11
+ "no_repeat_ngram_size": 3,
12
+ "num_beams": 4,
13
+ "pad_token_id": 1,
14
+ "transformers_version": "4.44.2"
15
+ }