Coleman Hooper commited on
Commit
ffaee50
2 Parent(s): 40cf72d 8855caf

Merge branch 'main' of https://huggingface.co/squeeze-ai-lab/sq-llama-30b-w4-s5 into main

Browse files
Files changed (1) hide show
  1. README.md +24 -0
README.md CHANGED
@@ -1,3 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
3
  ---
 
1
+ **SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
2
+
3
+ **TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
4
+ But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
5
+ Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
6
+ as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
7
+ we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
8
+ For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
9
+
10
+
11
+ ## Model description
12
+
13
+ 4-bit quantized LLaMA 30B model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
14
+
15
+ * **Base Model:** [LLaMA 30B](https://arxiv.org/abs/2302.13971)
16
+ * **Bitwidth:** 4-bit
17
+ * **Sparsity Level:** 0.05%
18
+
19
+ ## Links
20
+
21
+ * **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
22
+ * **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
23
+
24
+
25
  ---
26
  license: other
27
  ---