zitongyang commited on
Commit
aff0303
1 Parent(s): 6417c1b

Upload folder using huggingface_hub

Browse files
Files changed (34) hide show
  1. checkpoint-526/config.json +29 -0
  2. checkpoint-526/generation_config.json +14 -0
  3. checkpoint-526/model-00001-of-00029.safetensors +3 -0
  4. checkpoint-526/model-00002-of-00029.safetensors +3 -0
  5. checkpoint-526/model-00003-of-00029.safetensors +3 -0
  6. checkpoint-526/model-00004-of-00029.safetensors +3 -0
  7. checkpoint-526/model-00005-of-00029.safetensors +3 -0
  8. checkpoint-526/model-00006-of-00029.safetensors +3 -0
  9. checkpoint-526/model-00007-of-00029.safetensors +3 -0
  10. checkpoint-526/model-00008-of-00029.safetensors +3 -0
  11. checkpoint-526/model-00009-of-00029.safetensors +3 -0
  12. checkpoint-526/model-00010-of-00029.safetensors +3 -0
  13. checkpoint-526/model-00011-of-00029.safetensors +3 -0
  14. checkpoint-526/model-00012-of-00029.safetensors +3 -0
  15. checkpoint-526/model-00013-of-00029.safetensors +3 -0
  16. checkpoint-526/model-00014-of-00029.safetensors +3 -0
  17. checkpoint-526/model-00015-of-00029.safetensors +3 -0
  18. checkpoint-526/model-00016-of-00029.safetensors +3 -0
  19. checkpoint-526/model-00017-of-00029.safetensors +3 -0
  20. checkpoint-526/model-00018-of-00029.safetensors +3 -0
  21. checkpoint-526/model-00019-of-00029.safetensors +3 -0
  22. checkpoint-526/model-00020-of-00029.safetensors +3 -0
  23. checkpoint-526/model-00021-of-00029.safetensors +3 -0
  24. checkpoint-526/model-00022-of-00029.safetensors +3 -0
  25. checkpoint-526/model-00023-of-00029.safetensors +3 -0
  26. checkpoint-526/model-00024-of-00029.safetensors +3 -0
  27. checkpoint-526/model-00025-of-00029.safetensors +3 -0
  28. checkpoint-526/model-00026-of-00029.safetensors +3 -0
  29. checkpoint-526/model-00027-of-00029.safetensors +3 -0
  30. checkpoint-526/model-00028-of-00029.safetensors +3 -0
  31. checkpoint-526/model-00029-of-00029.safetensors +3 -0
  32. checkpoint-526/model.safetensors.index.json +778 -0
  33. checkpoint-526/trainer_state.json +3715 -0
  34. checkpoint-526/training_args.bin +3 -0
checkpoint-526/config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-32B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 27648,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 64,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
checkpoint-526/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.1"
14
+ }
checkpoint-526/model-00001-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d64e21cda543d75107d9194030ca982fea41c94d8d0ff3a0d9728177f667a59
3
+ size 4498420872
checkpoint-526/model-00002-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5b922a150134c361c4d17dde78af8923fb433cc87ce6c1a4414835a966fe82
3
+ size 4718804768
checkpoint-526/model-00003-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9314092d6b41574be1888569687ec6b74be867d733274a85c1b31c506393805
3
+ size 4467075880
checkpoint-526/model-00004-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:723059ed3aaecb22f77503de6ca60d8f6a5e51edfd3fe9f4d20fd5036e4f86fe
3
+ size 4467075880
checkpoint-526/model-00005-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b50bcf47963165025f4b41dc34ae095e31c2a6eb83e6af163d93a70d6000384
3
+ size 4718804760
checkpoint-526/model-00006-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a5d2b2a1d7ae6879eb88c50559f31fdcf35a723e354ed1e1a8e016aeecae1fa
3
+ size 4467075904
checkpoint-526/model-00007-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f0a0e6685a57febc12941bc863e3b37fb519b8292cbfe8c67302bd0048ee3be
3
+ size 4467075904
checkpoint-526/model-00008-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4a3e01859f9eeab6bcc21f4a6786a2389ac47281477efafd23b6cb033d1465
3
+ size 4718804800
checkpoint-526/model-00009-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7ecfaa82d6407668253d6df502949c83c2659ad182801584a5116f9b978e89d
3
+ size 4467075904
checkpoint-526/model-00010-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b0ea228937683436d852338436380fd74f94eed22077ce062dbf70490d263a
3
+ size 4467075904
checkpoint-526/model-00011-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad042682c62dcabd32c950eb6eda0b61d6a18714832896e16f4c22b4c56e234a
3
+ size 4718804800
checkpoint-526/model-00012-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92aaf203ffe74d3ed4ffcbf3d8ea77e7172e77fdbd240709a3105704841da7e9
3
+ size 4467075904
checkpoint-526/model-00013-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ed271e0348c7125c517ef17c0bfa3d20b2ad289110bbd6c53b9178389a9f700
3
+ size 4467075904
checkpoint-526/model-00014-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c425b251038ebe729e97c3897fa903ebed7dbf4700d1acfb5501431f63f481a
3
+ size 4718804800
checkpoint-526/model-00015-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e7004c43c5348de0318ead0b1151b70dd686e4c616c2eff1ac0ee4beea21d3e
3
+ size 4467075904
checkpoint-526/model-00016-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d65096fde296dfb75915806244de63f576229e2ec394b6f027bc7048ed985ac4
3
+ size 4467075904
checkpoint-526/model-00017-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99757de2b12cb470f2eb0d92ae2de59df83c6d77bf8c3f0b848279350e235fd4
3
+ size 4718804800
checkpoint-526/model-00018-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c3a8fc668cb3464dc02424e22b3e492c00ad578dd512529f3fdef1d75491cd1
3
+ size 4467075904
checkpoint-526/model-00019-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e14cf9af9f01c9864cf412043b9aefa1989f556c71a97eaa10022ffb5afaade3
3
+ size 4467075904
checkpoint-526/model-00020-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcaacddbadcd95bf47e8a6cf4535358e0b29e47a5ec5100316164f45e0916996
3
+ size 4718804800
checkpoint-526/model-00021-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47db5818914b807d14274b7bde0165f327aab808cd41dcb54db055a5d0ee01ae
3
+ size 4467075904
checkpoint-526/model-00022-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c0c926dbed1e2dc85c3aee24394f24d2675009dd86a944a143177f02541d299
3
+ size 4467075904
checkpoint-526/model-00023-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:988696afc7b311f9c2816e83fd99f9882ddb46cfd237f3fd49c518bda5a620dc
3
+ size 4718804800
checkpoint-526/model-00024-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac4d8c50c62092b2f0d1f21f2c2557d60f42c7a22d89e925c2d3cbf51d3327ef
3
+ size 4467075904
checkpoint-526/model-00025-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:328d52a54a35678b867a12f1bef4b04bf127e98292d8fce67d0ec7177c6c5cfd
3
+ size 4467075904
checkpoint-526/model-00026-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:558fc99700a3381053620b86650b620ef39395f6ec9f8725832dc1ff1db24876
3
+ size 4718804800
checkpoint-526/model-00027-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2234f8544ea04f4c33e40f1248aed7f957515890e96402047c0812d8530ce2
3
+ size 4467075904
checkpoint-526/model-00028-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9023379cf3b53d5234aad8aa06b988801660146ec75e2793c7459f4929169f2e
3
+ size 4467075904
checkpoint-526/model-00029-of-00029.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8906b2a5c1449bf0b5361ca2920fd44a7be87cfb3155c5b49f366b07d96582e9
3
+ size 3680563768
checkpoint-526/model.safetensors.index.json ADDED
@@ -0,0 +1,778 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 131055505408
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00029-of-00029.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00029.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00002-of-00029.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00029.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00029.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00029.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00029.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00029.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00029.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00029.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00029.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00029.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00029.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00006-of-00029.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00006-of-00029.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00006-of-00029.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00006-of-00029.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00006-of-00029.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00007-of-00029.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00006-of-00029.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00006-of-00029.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00006-of-00029.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00007-of-00029.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00007-of-00029.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00007-of-00029.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00007-of-00029.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00008-of-00029.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00007-of-00029.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00007-of-00029.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00007-of-00029.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00008-of-00029.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00008-of-00029.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00009-of-00029.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00008-of-00029.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00008-of-00029.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00008-of-00029.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00009-of-00029.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00009-of-00029.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00009-of-00029.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00009-of-00029.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00010-of-00029.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00009-of-00029.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00009-of-00029.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00009-of-00029.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00029.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00010-of-00029.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00010-of-00029.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00010-of-00029.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00010-of-00029.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00011-of-00029.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00010-of-00029.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00010-of-00029.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00010-of-00029.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00011-of-00029.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00011-of-00029.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00012-of-00029.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00011-of-00029.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00011-of-00029.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00011-of-00029.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00012-of-00029.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00012-of-00029.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00012-of-00029.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00012-of-00029.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00013-of-00029.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00012-of-00029.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00012-of-00029.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00012-of-00029.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00013-of-00029.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00013-of-00029.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00013-of-00029.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00013-of-00029.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00014-of-00029.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00013-of-00029.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00013-of-00029.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00013-of-00029.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00014-of-00029.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00029.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00029.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00029.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00029.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00014-of-00029.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00015-of-00029.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00014-of-00029.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00014-of-00029.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00014-of-00029.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00015-of-00029.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00015-of-00029.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00015-of-00029.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00015-of-00029.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00016-of-00029.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00015-of-00029.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00015-of-00029.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00015-of-00029.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00016-of-00029.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00016-of-00029.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00016-of-00029.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00016-of-00029.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00017-of-00029.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00016-of-00029.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00016-of-00029.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00016-of-00029.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00017-of-00029.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00017-of-00029.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00018-of-00029.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00017-of-00029.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00017-of-00029.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00017-of-00029.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00018-of-00029.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00018-of-00029.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00018-of-00029.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00018-of-00029.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00029.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00003-of-00029.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00003-of-00029.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00003-of-00029.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00019-of-00029.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00018-of-00029.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00018-of-00029.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00018-of-00029.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00019-of-00029.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00019-of-00029.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00019-of-00029.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00019-of-00029.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00020-of-00029.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00019-of-00029.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00019-of-00029.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00019-of-00029.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00020-of-00029.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00020-of-00029.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00021-of-00029.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00020-of-00029.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00020-of-00029.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00020-of-00029.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00021-of-00029.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00021-of-00029.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00021-of-00029.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00021-of-00029.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00022-of-00029.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00021-of-00029.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00021-of-00029.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00021-of-00029.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
524
+ "model.layers.48.input_layernorm.weight": "model-00022-of-00029.safetensors",
525
+ "model.layers.48.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
526
+ "model.layers.48.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
527
+ "model.layers.48.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
528
+ "model.layers.48.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
529
+ "model.layers.48.self_attn.k_proj.bias": "model-00022-of-00029.safetensors",
530
+ "model.layers.48.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
531
+ "model.layers.48.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
532
+ "model.layers.48.self_attn.q_proj.bias": "model-00022-of-00029.safetensors",
533
+ "model.layers.48.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
534
+ "model.layers.48.self_attn.v_proj.bias": "model-00022-of-00029.safetensors",
535
+ "model.layers.48.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
536
+ "model.layers.49.input_layernorm.weight": "model-00023-of-00029.safetensors",
537
+ "model.layers.49.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
538
+ "model.layers.49.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
539
+ "model.layers.49.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
540
+ "model.layers.49.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
541
+ "model.layers.49.self_attn.k_proj.bias": "model-00022-of-00029.safetensors",
542
+ "model.layers.49.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
543
+ "model.layers.49.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
544
+ "model.layers.49.self_attn.q_proj.bias": "model-00022-of-00029.safetensors",
545
+ "model.layers.49.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
546
+ "model.layers.49.self_attn.v_proj.bias": "model-00022-of-00029.safetensors",
547
+ "model.layers.49.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
548
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00029.safetensors",
549
+ "model.layers.5.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
550
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
551
+ "model.layers.5.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
552
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
553
+ "model.layers.5.self_attn.k_proj.bias": "model-00003-of-00029.safetensors",
554
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
555
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
556
+ "model.layers.5.self_attn.q_proj.bias": "model-00003-of-00029.safetensors",
557
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
558
+ "model.layers.5.self_attn.v_proj.bias": "model-00003-of-00029.safetensors",
559
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
560
+ "model.layers.50.input_layernorm.weight": "model-00023-of-00029.safetensors",
561
+ "model.layers.50.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
562
+ "model.layers.50.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
563
+ "model.layers.50.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
564
+ "model.layers.50.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
565
+ "model.layers.50.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
566
+ "model.layers.50.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
567
+ "model.layers.50.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
568
+ "model.layers.50.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
569
+ "model.layers.50.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
570
+ "model.layers.50.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
571
+ "model.layers.50.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
572
+ "model.layers.51.input_layernorm.weight": "model-00023-of-00029.safetensors",
573
+ "model.layers.51.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
574
+ "model.layers.51.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
575
+ "model.layers.51.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
576
+ "model.layers.51.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
577
+ "model.layers.51.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
578
+ "model.layers.51.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
579
+ "model.layers.51.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
580
+ "model.layers.51.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
581
+ "model.layers.51.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
582
+ "model.layers.51.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
583
+ "model.layers.51.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
584
+ "model.layers.52.input_layernorm.weight": "model-00024-of-00029.safetensors",
585
+ "model.layers.52.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
586
+ "model.layers.52.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
587
+ "model.layers.52.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
588
+ "model.layers.52.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
589
+ "model.layers.52.self_attn.k_proj.bias": "model-00023-of-00029.safetensors",
590
+ "model.layers.52.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
591
+ "model.layers.52.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
592
+ "model.layers.52.self_attn.q_proj.bias": "model-00023-of-00029.safetensors",
593
+ "model.layers.52.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
594
+ "model.layers.52.self_attn.v_proj.bias": "model-00023-of-00029.safetensors",
595
+ "model.layers.52.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
596
+ "model.layers.53.input_layernorm.weight": "model-00024-of-00029.safetensors",
597
+ "model.layers.53.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
598
+ "model.layers.53.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
599
+ "model.layers.53.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
600
+ "model.layers.53.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
601
+ "model.layers.53.self_attn.k_proj.bias": "model-00024-of-00029.safetensors",
602
+ "model.layers.53.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
603
+ "model.layers.53.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
604
+ "model.layers.53.self_attn.q_proj.bias": "model-00024-of-00029.safetensors",
605
+ "model.layers.53.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
606
+ "model.layers.53.self_attn.v_proj.bias": "model-00024-of-00029.safetensors",
607
+ "model.layers.53.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
608
+ "model.layers.54.input_layernorm.weight": "model-00025-of-00029.safetensors",
609
+ "model.layers.54.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
610
+ "model.layers.54.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
611
+ "model.layers.54.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
612
+ "model.layers.54.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
613
+ "model.layers.54.self_attn.k_proj.bias": "model-00024-of-00029.safetensors",
614
+ "model.layers.54.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
615
+ "model.layers.54.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
616
+ "model.layers.54.self_attn.q_proj.bias": "model-00024-of-00029.safetensors",
617
+ "model.layers.54.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
618
+ "model.layers.54.self_attn.v_proj.bias": "model-00024-of-00029.safetensors",
619
+ "model.layers.54.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
620
+ "model.layers.55.input_layernorm.weight": "model-00025-of-00029.safetensors",
621
+ "model.layers.55.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
622
+ "model.layers.55.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
623
+ "model.layers.55.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
624
+ "model.layers.55.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
625
+ "model.layers.55.self_attn.k_proj.bias": "model-00025-of-00029.safetensors",
626
+ "model.layers.55.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
627
+ "model.layers.55.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
628
+ "model.layers.55.self_attn.q_proj.bias": "model-00025-of-00029.safetensors",
629
+ "model.layers.55.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
630
+ "model.layers.55.self_attn.v_proj.bias": "model-00025-of-00029.safetensors",
631
+ "model.layers.55.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
632
+ "model.layers.56.input_layernorm.weight": "model-00026-of-00029.safetensors",
633
+ "model.layers.56.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
634
+ "model.layers.56.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
635
+ "model.layers.56.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
636
+ "model.layers.56.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
637
+ "model.layers.56.self_attn.k_proj.bias": "model-00025-of-00029.safetensors",
638
+ "model.layers.56.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
639
+ "model.layers.56.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
640
+ "model.layers.56.self_attn.q_proj.bias": "model-00025-of-00029.safetensors",
641
+ "model.layers.56.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
642
+ "model.layers.56.self_attn.v_proj.bias": "model-00025-of-00029.safetensors",
643
+ "model.layers.56.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
644
+ "model.layers.57.input_layernorm.weight": "model-00026-of-00029.safetensors",
645
+ "model.layers.57.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
646
+ "model.layers.57.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
647
+ "model.layers.57.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
648
+ "model.layers.57.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
649
+ "model.layers.57.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
650
+ "model.layers.57.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
651
+ "model.layers.57.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
652
+ "model.layers.57.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
653
+ "model.layers.57.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
654
+ "model.layers.57.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
655
+ "model.layers.57.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
656
+ "model.layers.58.input_layernorm.weight": "model-00026-of-00029.safetensors",
657
+ "model.layers.58.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
658
+ "model.layers.58.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
659
+ "model.layers.58.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
660
+ "model.layers.58.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
661
+ "model.layers.58.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
662
+ "model.layers.58.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
663
+ "model.layers.58.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
664
+ "model.layers.58.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
665
+ "model.layers.58.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
666
+ "model.layers.58.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
667
+ "model.layers.58.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
668
+ "model.layers.59.input_layernorm.weight": "model-00027-of-00029.safetensors",
669
+ "model.layers.59.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
670
+ "model.layers.59.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
671
+ "model.layers.59.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
672
+ "model.layers.59.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
673
+ "model.layers.59.self_attn.k_proj.bias": "model-00026-of-00029.safetensors",
674
+ "model.layers.59.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
675
+ "model.layers.59.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
676
+ "model.layers.59.self_attn.q_proj.bias": "model-00026-of-00029.safetensors",
677
+ "model.layers.59.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
678
+ "model.layers.59.self_attn.v_proj.bias": "model-00026-of-00029.safetensors",
679
+ "model.layers.59.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
680
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00029.safetensors",
681
+ "model.layers.6.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
682
+ "model.layers.6.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
683
+ "model.layers.6.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
684
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
685
+ "model.layers.6.self_attn.k_proj.bias": "model-00004-of-00029.safetensors",
686
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
687
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
688
+ "model.layers.6.self_attn.q_proj.bias": "model-00004-of-00029.safetensors",
689
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
690
+ "model.layers.6.self_attn.v_proj.bias": "model-00004-of-00029.safetensors",
691
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
692
+ "model.layers.60.input_layernorm.weight": "model-00027-of-00029.safetensors",
693
+ "model.layers.60.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
694
+ "model.layers.60.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
695
+ "model.layers.60.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
696
+ "model.layers.60.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
697
+ "model.layers.60.self_attn.k_proj.bias": "model-00027-of-00029.safetensors",
698
+ "model.layers.60.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
699
+ "model.layers.60.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
700
+ "model.layers.60.self_attn.q_proj.bias": "model-00027-of-00029.safetensors",
701
+ "model.layers.60.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
702
+ "model.layers.60.self_attn.v_proj.bias": "model-00027-of-00029.safetensors",
703
+ "model.layers.60.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
704
+ "model.layers.61.input_layernorm.weight": "model-00028-of-00029.safetensors",
705
+ "model.layers.61.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
706
+ "model.layers.61.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
707
+ "model.layers.61.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
708
+ "model.layers.61.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
709
+ "model.layers.61.self_attn.k_proj.bias": "model-00027-of-00029.safetensors",
710
+ "model.layers.61.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
711
+ "model.layers.61.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
712
+ "model.layers.61.self_attn.q_proj.bias": "model-00027-of-00029.safetensors",
713
+ "model.layers.61.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
714
+ "model.layers.61.self_attn.v_proj.bias": "model-00027-of-00029.safetensors",
715
+ "model.layers.61.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
716
+ "model.layers.62.input_layernorm.weight": "model-00028-of-00029.safetensors",
717
+ "model.layers.62.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
718
+ "model.layers.62.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
719
+ "model.layers.62.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
720
+ "model.layers.62.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
721
+ "model.layers.62.self_attn.k_proj.bias": "model-00028-of-00029.safetensors",
722
+ "model.layers.62.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
723
+ "model.layers.62.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
724
+ "model.layers.62.self_attn.q_proj.bias": "model-00028-of-00029.safetensors",
725
+ "model.layers.62.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
726
+ "model.layers.62.self_attn.v_proj.bias": "model-00028-of-00029.safetensors",
727
+ "model.layers.62.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
728
+ "model.layers.63.input_layernorm.weight": "model-00029-of-00029.safetensors",
729
+ "model.layers.63.mlp.down_proj.weight": "model-00029-of-00029.safetensors",
730
+ "model.layers.63.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
731
+ "model.layers.63.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
732
+ "model.layers.63.post_attention_layernorm.weight": "model-00029-of-00029.safetensors",
733
+ "model.layers.63.self_attn.k_proj.bias": "model-00028-of-00029.safetensors",
734
+ "model.layers.63.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
735
+ "model.layers.63.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
736
+ "model.layers.63.self_attn.q_proj.bias": "model-00028-of-00029.safetensors",
737
+ "model.layers.63.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
738
+ "model.layers.63.self_attn.v_proj.bias": "model-00028-of-00029.safetensors",
739
+ "model.layers.63.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
740
+ "model.layers.7.input_layernorm.weight": "model-00005-of-00029.safetensors",
741
+ "model.layers.7.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
742
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
743
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
744
+ "model.layers.7.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
745
+ "model.layers.7.self_attn.k_proj.bias": "model-00004-of-00029.safetensors",
746
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
747
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
748
+ "model.layers.7.self_attn.q_proj.bias": "model-00004-of-00029.safetensors",
749
+ "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
750
+ "model.layers.7.self_attn.v_proj.bias": "model-00004-of-00029.safetensors",
751
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
752
+ "model.layers.8.input_layernorm.weight": "model-00005-of-00029.safetensors",
753
+ "model.layers.8.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
754
+ "model.layers.8.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
755
+ "model.layers.8.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
756
+ "model.layers.8.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
757
+ "model.layers.8.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
758
+ "model.layers.8.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
759
+ "model.layers.8.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
760
+ "model.layers.8.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
761
+ "model.layers.8.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
762
+ "model.layers.8.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
763
+ "model.layers.8.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
764
+ "model.layers.9.input_layernorm.weight": "model-00005-of-00029.safetensors",
765
+ "model.layers.9.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
766
+ "model.layers.9.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
767
+ "model.layers.9.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
768
+ "model.layers.9.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
769
+ "model.layers.9.self_attn.k_proj.bias": "model-00005-of-00029.safetensors",
770
+ "model.layers.9.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
771
+ "model.layers.9.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
772
+ "model.layers.9.self_attn.q_proj.bias": "model-00005-of-00029.safetensors",
773
+ "model.layers.9.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
774
+ "model.layers.9.self_attn.v_proj.bias": "model-00005-of-00029.safetensors",
775
+ "model.layers.9.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
776
+ "model.norm.weight": "model-00029-of-00029.safetensors"
777
+ }
778
+ }
checkpoint-526/trainer_state.json ADDED
@@ -0,0 +1,3715 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9971523493118177,
5
+ "eval_steps": 500,
6
+ "global_step": 526,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0037968675842429997,
13
+ "grad_norm": 190.1852569580078,
14
+ "learning_rate": 1.8518518518518518e-07,
15
+ "loss": 2.1743,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.007593735168485999,
20
+ "grad_norm": 318.4629211425781,
21
+ "learning_rate": 3.7037037037037036e-07,
22
+ "loss": 2.1888,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.011390602752728999,
27
+ "grad_norm": 4.048186302185059,
28
+ "learning_rate": 5.555555555555555e-07,
29
+ "loss": 1.8374,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.015187470336971999,
34
+ "grad_norm": 149.984375,
35
+ "learning_rate": 7.407407407407407e-07,
36
+ "loss": 2.2082,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.018984337921214997,
41
+ "grad_norm": 140.36471557617188,
42
+ "learning_rate": 9.259259259259259e-07,
43
+ "loss": 2.5169,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.022781205505457997,
48
+ "grad_norm": 81.98410034179688,
49
+ "learning_rate": 1.111111111111111e-06,
50
+ "loss": 2.0747,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.026578073089700997,
55
+ "grad_norm": 3.9009580612182617,
56
+ "learning_rate": 1.2962962962962962e-06,
57
+ "loss": 1.8328,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.030374940673943997,
62
+ "grad_norm": 239.54661560058594,
63
+ "learning_rate": 1.4814814814814815e-06,
64
+ "loss": 2.1877,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.034171808258187,
69
+ "grad_norm": 181.9974822998047,
70
+ "learning_rate": 1.6666666666666667e-06,
71
+ "loss": 1.9126,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.037968675842429994,
76
+ "grad_norm": 71.94468688964844,
77
+ "learning_rate": 1.8518518518518519e-06,
78
+ "loss": 1.9289,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.041765543426673,
83
+ "grad_norm": 327.50091552734375,
84
+ "learning_rate": 2.037037037037037e-06,
85
+ "loss": 1.8236,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.045562411010915994,
90
+ "grad_norm": 3.223841667175293,
91
+ "learning_rate": 2.222222222222222e-06,
92
+ "loss": 1.7878,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.04935927859515899,
97
+ "grad_norm": 230.49221801757812,
98
+ "learning_rate": 2.4074074074074075e-06,
99
+ "loss": 1.6871,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.053156146179401995,
104
+ "grad_norm": 18558.3125,
105
+ "learning_rate": 2.5925925925925925e-06,
106
+ "loss": 1.6958,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.05695301376364499,
111
+ "grad_norm": 2.5916926860809326,
112
+ "learning_rate": 2.7777777777777783e-06,
113
+ "loss": 1.7525,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.060749881347887995,
118
+ "grad_norm": 2.61940598487854,
119
+ "learning_rate": 2.962962962962963e-06,
120
+ "loss": 1.7431,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.064546748932131,
125
+ "grad_norm": 175.40200805664062,
126
+ "learning_rate": 3.1481481481481483e-06,
127
+ "loss": 1.6176,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.068343616516374,
132
+ "grad_norm": 2.723275899887085,
133
+ "learning_rate": 3.3333333333333333e-06,
134
+ "loss": 1.7091,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.07214048410061699,
139
+ "grad_norm": 575.9302368164062,
140
+ "learning_rate": 3.5185185185185187e-06,
141
+ "loss": 1.4155,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.07593735168485999,
146
+ "grad_norm": 1.5204131603240967,
147
+ "learning_rate": 3.7037037037037037e-06,
148
+ "loss": 1.668,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.07973421926910298,
153
+ "grad_norm": 172.04342651367188,
154
+ "learning_rate": 3.88888888888889e-06,
155
+ "loss": 1.5175,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.083531086853346,
160
+ "grad_norm": 36.41116714477539,
161
+ "learning_rate": 4.074074074074074e-06,
162
+ "loss": 1.3265,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.08732795443758899,
167
+ "grad_norm": 1.3005378246307373,
168
+ "learning_rate": 4.2592592592592596e-06,
169
+ "loss": 1.6097,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.09112482202183199,
174
+ "grad_norm": 23.33233642578125,
175
+ "learning_rate": 4.444444444444444e-06,
176
+ "loss": 1.4055,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.09492168960607499,
181
+ "grad_norm": 1.2947165966033936,
182
+ "learning_rate": 4.62962962962963e-06,
183
+ "loss": 1.552,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.09871855719031798,
188
+ "grad_norm": 62.264190673828125,
189
+ "learning_rate": 4.814814814814815e-06,
190
+ "loss": 1.198,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.10251542477456099,
195
+ "grad_norm": 16.471799850463867,
196
+ "learning_rate": 5e-06,
197
+ "loss": 1.3374,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.10631229235880399,
202
+ "grad_norm": 9.552218437194824,
203
+ "learning_rate": 4.999950454155801e-06,
204
+ "loss": 1.3352,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.11010915994304699,
209
+ "grad_norm": 1.3561033010482788,
210
+ "learning_rate": 4.999801818587036e-06,
211
+ "loss": 1.5152,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.11390602752728998,
216
+ "grad_norm": 3.8642690181732178,
217
+ "learning_rate": 4.999554099185124e-06,
218
+ "loss": 1.3093,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.11770289511153298,
223
+ "grad_norm": 0.9432722926139832,
224
+ "learning_rate": 4.999207305768841e-06,
225
+ "loss": 1.3048,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.12149976269577599,
230
+ "grad_norm": 0.9486730694770813,
231
+ "learning_rate": 4.998761452083922e-06,
232
+ "loss": 1.4368,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.12529663028001897,
237
+ "grad_norm": 0.7894783020019531,
238
+ "learning_rate": 4.998216555802526e-06,
239
+ "loss": 1.2765,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.129093497864262,
244
+ "grad_norm": 0.8032355308532715,
245
+ "learning_rate": 4.997572638522531e-06,
246
+ "loss": 1.425,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.132890365448505,
251
+ "grad_norm": 0.6962498426437378,
252
+ "learning_rate": 4.996829725766676e-06,
253
+ "loss": 1.4005,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.136687233032748,
258
+ "grad_norm": 0.6125718355178833,
259
+ "learning_rate": 4.995987846981554e-06,
260
+ "loss": 1.0826,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.140484100616991,
265
+ "grad_norm": 0.6794630885124207,
266
+ "learning_rate": 4.995047035536439e-06,
267
+ "loss": 1.0644,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.14428096820123398,
272
+ "grad_norm": 0.6797907948493958,
273
+ "learning_rate": 4.9940073287219705e-06,
274
+ "loss": 1.0821,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.14807783578547698,
279
+ "grad_norm": 0.6790012121200562,
280
+ "learning_rate": 4.992868767748669e-06,
281
+ "loss": 1.2284,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.15187470336971998,
286
+ "grad_norm": 0.6396064758300781,
287
+ "learning_rate": 4.991631397745307e-06,
288
+ "loss": 1.197,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.15567157095396297,
293
+ "grad_norm": 0.6216674447059631,
294
+ "learning_rate": 4.990295267757117e-06,
295
+ "loss": 1.3547,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.15946843853820597,
300
+ "grad_norm": 0.49298611283302307,
301
+ "learning_rate": 4.98886043074385e-06,
302
+ "loss": 0.8974,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.16326530612244897,
307
+ "grad_norm": 0.5648188591003418,
308
+ "learning_rate": 4.987326943577675e-06,
309
+ "loss": 1.1868,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.167062173706692,
314
+ "grad_norm": 0.5617629885673523,
315
+ "learning_rate": 4.985694867040924e-06,
316
+ "loss": 1.197,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.170859041290935,
321
+ "grad_norm": 0.5470258593559265,
322
+ "learning_rate": 4.983964265823687e-06,
323
+ "loss": 1.0242,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.17465590887517798,
328
+ "grad_norm": 0.5692163705825806,
329
+ "learning_rate": 4.98213520852124e-06,
330
+ "loss": 1.3244,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.17845277645942098,
335
+ "grad_norm": 0.4028306007385254,
336
+ "learning_rate": 4.980207767631335e-06,
337
+ "loss": 0.7001,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.18224964404366398,
342
+ "grad_norm": 0.49932053685188293,
343
+ "learning_rate": 4.978182019551321e-06,
344
+ "loss": 1.1597,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.18604651162790697,
349
+ "grad_norm": 0.5206290483474731,
350
+ "learning_rate": 4.976058044575116e-06,
351
+ "loss": 1.3185,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.18984337921214997,
356
+ "grad_norm": 0.534298300743103,
357
+ "learning_rate": 4.973835926890027e-06,
358
+ "loss": 1.3182,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.19364024679639297,
363
+ "grad_norm": 0.4649883210659027,
364
+ "learning_rate": 4.9715157545734124e-06,
365
+ "loss": 1.1734,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.19743711438063596,
370
+ "grad_norm": 0.45419999957084656,
371
+ "learning_rate": 4.969097619589187e-06,
372
+ "loss": 1.1433,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.201233981964879,
377
+ "grad_norm": 0.4962867498397827,
378
+ "learning_rate": 4.9665816177841845e-06,
379
+ "loss": 1.1749,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.20503084954912199,
384
+ "grad_norm": 0.4966491162776947,
385
+ "learning_rate": 4.963967848884349e-06,
386
+ "loss": 1.1595,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.20882771713336498,
391
+ "grad_norm": 0.4114384055137634,
392
+ "learning_rate": 4.961256416490793e-06,
393
+ "loss": 0.8368,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.21262458471760798,
398
+ "grad_norm": 0.438700407743454,
399
+ "learning_rate": 4.9584474280756785e-06,
400
+ "loss": 1.1412,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.21642145230185098,
405
+ "grad_norm": 0.45085862278938293,
406
+ "learning_rate": 4.9555409949779695e-06,
407
+ "loss": 1.1312,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.22021831988609397,
412
+ "grad_norm": 0.4020615220069885,
413
+ "learning_rate": 4.952537232399012e-06,
414
+ "loss": 0.9898,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.22401518747033697,
419
+ "grad_norm": 0.43643948435783386,
420
+ "learning_rate": 4.9494362593979665e-06,
421
+ "loss": 1.1352,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.22781205505457996,
426
+ "grad_norm": 0.40290120244026184,
427
+ "learning_rate": 4.946238198887093e-06,
428
+ "loss": 0.9822,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.23160892263882296,
433
+ "grad_norm": 0.4434157609939575,
434
+ "learning_rate": 4.942943177626879e-06,
435
+ "loss": 1.1303,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.23540579022306596,
440
+ "grad_norm": 0.48527973890304565,
441
+ "learning_rate": 4.939551326221012e-06,
442
+ "loss": 1.2812,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.23920265780730898,
447
+ "grad_norm": 0.4416787028312683,
448
+ "learning_rate": 4.936062779111205e-06,
449
+ "loss": 1.1381,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.24299952539155198,
454
+ "grad_norm": 0.4510328769683838,
455
+ "learning_rate": 4.932477674571867e-06,
456
+ "loss": 1.2696,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.24679639297579498,
461
+ "grad_norm": 0.38020116090774536,
462
+ "learning_rate": 4.928796154704623e-06,
463
+ "loss": 0.9767,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.25059326056003794,
468
+ "grad_norm": 0.4880014657974243,
469
+ "learning_rate": 4.925018365432681e-06,
470
+ "loss": 1.2679,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.25439012814428097,
475
+ "grad_norm": 0.4506332576274872,
476
+ "learning_rate": 4.921144456495048e-06,
477
+ "loss": 1.1344,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.258186995728524,
482
+ "grad_norm": 0.45424792170524597,
483
+ "learning_rate": 4.9171745814405945e-06,
484
+ "loss": 1.2797,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.26198386331276696,
489
+ "grad_norm": 0.4969100058078766,
490
+ "learning_rate": 4.9131088976219695e-06,
491
+ "loss": 1.2685,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.26578073089701,
496
+ "grad_norm": 0.4142298400402069,
497
+ "learning_rate": 4.908947566189362e-06,
498
+ "loss": 1.1168,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.26957759848125296,
503
+ "grad_norm": 0.4250011444091797,
504
+ "learning_rate": 4.904690752084117e-06,
505
+ "loss": 1.1161,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.273374466065496,
510
+ "grad_norm": 0.4570682644844055,
511
+ "learning_rate": 4.900338624032191e-06,
512
+ "loss": 1.2663,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.27717133364973895,
517
+ "grad_norm": 0.43025946617126465,
518
+ "learning_rate": 4.895891354537472e-06,
519
+ "loss": 1.2616,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.280968201233982,
524
+ "grad_norm": 0.42482641339302063,
525
+ "learning_rate": 4.891349119874936e-06,
526
+ "loss": 1.1215,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.28476506881822494,
531
+ "grad_norm": 0.4691850244998932,
532
+ "learning_rate": 4.886712100083664e-06,
533
+ "loss": 1.1117,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.28856193640246797,
538
+ "grad_norm": 0.4500940442085266,
539
+ "learning_rate": 4.881980478959707e-06,
540
+ "loss": 1.1082,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.292358803986711,
545
+ "grad_norm": 0.3645106256008148,
546
+ "learning_rate": 4.877154444048792e-06,
547
+ "loss": 0.9683,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.29615567157095396,
552
+ "grad_norm": 0.42706671357154846,
553
+ "learning_rate": 4.872234186638898e-06,
554
+ "loss": 1.106,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.299952539155197,
559
+ "grad_norm": 0.416423499584198,
560
+ "learning_rate": 4.8672199017526725e-06,
561
+ "loss": 1.1109,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.30374940673943995,
566
+ "grad_norm": 0.46140867471694946,
567
+ "learning_rate": 4.862111788139697e-06,
568
+ "loss": 1.2646,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.307546274323683,
573
+ "grad_norm": 0.4429333508014679,
574
+ "learning_rate": 4.856910048268613e-06,
575
+ "loss": 1.1331,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.31134314190792595,
580
+ "grad_norm": 0.42622944712638855,
581
+ "learning_rate": 4.851614888319093e-06,
582
+ "loss": 1.0966,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.31514000949216897,
587
+ "grad_norm": 0.5261926054954529,
588
+ "learning_rate": 4.846226518173676e-06,
589
+ "loss": 1.2528,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.31893687707641194,
594
+ "grad_norm": 0.4338201880455017,
595
+ "learning_rate": 4.840745151409437e-06,
596
+ "loss": 1.2542,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.32273374466065496,
601
+ "grad_norm": 0.44151878356933594,
602
+ "learning_rate": 4.835171005289533e-06,
603
+ "loss": 1.1135,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.32653061224489793,
608
+ "grad_norm": 0.4812638461589813,
609
+ "learning_rate": 4.8295043007545836e-06,
610
+ "loss": 1.2653,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.33032747982914096,
615
+ "grad_norm": 0.562940239906311,
616
+ "learning_rate": 4.823745262413917e-06,
617
+ "loss": 1.2494,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.334124347413384,
622
+ "grad_norm": 0.4242718517780304,
623
+ "learning_rate": 4.817894118536667e-06,
624
+ "loss": 1.1076,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.33792121499762695,
629
+ "grad_norm": 0.45141878724098206,
630
+ "learning_rate": 4.811951101042722e-06,
631
+ "loss": 1.1108,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.34171808258187,
636
+ "grad_norm": 0.5067852139472961,
637
+ "learning_rate": 4.805916445493538e-06,
638
+ "loss": 1.2272,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.34551495016611294,
643
+ "grad_norm": 0.4855363965034485,
644
+ "learning_rate": 4.799790391082799e-06,
645
+ "loss": 1.1,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.34931181775035597,
650
+ "grad_norm": 0.47762539982795715,
651
+ "learning_rate": 4.793573180626934e-06,
652
+ "loss": 1.2453,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.35310868533459894,
657
+ "grad_norm": 0.5055530071258545,
658
+ "learning_rate": 4.787265060555495e-06,
659
+ "loss": 1.2437,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.35690555291884196,
664
+ "grad_norm": 0.4677724838256836,
665
+ "learning_rate": 4.7808662809013895e-06,
666
+ "loss": 1.223,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.36070242050308493,
671
+ "grad_norm": 0.47210943698883057,
672
+ "learning_rate": 4.774377095290969e-06,
673
+ "loss": 1.2287,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.36449928808732796,
678
+ "grad_norm": 0.48820409178733826,
679
+ "learning_rate": 4.76779776093398e-06,
680
+ "loss": 1.0997,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.368296155671571,
685
+ "grad_norm": 0.509981632232666,
686
+ "learning_rate": 4.761128538613359e-06,
687
+ "loss": 1.2303,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.37209302325581395,
692
+ "grad_norm": 0.46266815066337585,
693
+ "learning_rate": 4.754369692674906e-06,
694
+ "loss": 1.2366,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.375889890840057,
699
+ "grad_norm": 0.4689420759677887,
700
+ "learning_rate": 4.747521491016805e-06,
701
+ "loss": 1.2379,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.37968675842429994,
706
+ "grad_norm": 0.454712837934494,
707
+ "learning_rate": 4.740584205079002e-06,
708
+ "loss": 1.1078,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.38348362600854297,
713
+ "grad_norm": 0.5033725500106812,
714
+ "learning_rate": 4.7335581098324465e-06,
715
+ "loss": 1.2319,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.38728049359278593,
720
+ "grad_norm": 0.5276666283607483,
721
+ "learning_rate": 4.726443483768195e-06,
722
+ "loss": 1.2373,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.39107736117702896,
727
+ "grad_norm": 0.4005415737628937,
728
+ "learning_rate": 4.719240608886372e-06,
729
+ "loss": 0.9373,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.39487422876127193,
734
+ "grad_norm": 0.456887423992157,
735
+ "learning_rate": 4.711949770684989e-06,
736
+ "loss": 1.2402,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.39867109634551495,
741
+ "grad_norm": 0.4958035349845886,
742
+ "learning_rate": 4.704571258148634e-06,
743
+ "loss": 1.2327,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.402467963929758,
748
+ "grad_norm": 0.40182697772979736,
749
+ "learning_rate": 4.697105363737015e-06,
750
+ "loss": 0.9684,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.40626483151400095,
755
+ "grad_norm": 0.43226033449172974,
756
+ "learning_rate": 4.689552383373362e-06,
757
+ "loss": 1.0848,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.41006169909824397,
762
+ "grad_norm": 0.4296877682209015,
763
+ "learning_rate": 4.681912616432707e-06,
764
+ "loss": 0.9568,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.41385856668248694,
769
+ "grad_norm": 0.5179736018180847,
770
+ "learning_rate": 4.674186365730012e-06,
771
+ "loss": 1.2286,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.41765543426672996,
776
+ "grad_norm": 0.4191986620426178,
777
+ "learning_rate": 4.666373937508166e-06,
778
+ "loss": 0.9606,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.42145230185097293,
783
+ "grad_norm": 0.412567675113678,
784
+ "learning_rate": 4.658475641425854e-06,
785
+ "loss": 1.0793,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.42524916943521596,
790
+ "grad_norm": 0.4645300507545471,
791
+ "learning_rate": 4.6504917905452705e-06,
792
+ "loss": 1.0835,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.4290460370194589,
797
+ "grad_norm": 0.3561910092830658,
798
+ "learning_rate": 4.6424227013197235e-06,
799
+ "loss": 0.7952,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.43284290460370195,
804
+ "grad_norm": 0.5064642429351807,
805
+ "learning_rate": 4.6342686935810795e-06,
806
+ "loss": 1.2319,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.4366397721879449,
811
+ "grad_norm": 0.4808673858642578,
812
+ "learning_rate": 4.6260300905271e-06,
813
+ "loss": 1.223,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.44043663977218794,
818
+ "grad_norm": 0.4152892529964447,
819
+ "learning_rate": 4.617707218708617e-06,
820
+ "loss": 1.0765,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.44423350735643097,
825
+ "grad_norm": 0.49487704038619995,
826
+ "learning_rate": 4.6093004080166e-06,
827
+ "loss": 1.2205,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.44803037494067394,
832
+ "grad_norm": 0.4736645817756653,
833
+ "learning_rate": 4.600809991669076e-06,
834
+ "loss": 1.0811,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.45182724252491696,
839
+ "grad_norm": 0.46936193108558655,
840
+ "learning_rate": 4.59223630619792e-06,
841
+ "loss": 1.0809,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.45562411010915993,
846
+ "grad_norm": 0.4555075466632843,
847
+ "learning_rate": 4.5835796914355195e-06,
848
+ "loss": 1.1008,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.45942097769340295,
853
+ "grad_norm": 0.43824076652526855,
854
+ "learning_rate": 4.5748404905013045e-06,
855
+ "loss": 1.1092,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.4632178452776459,
860
+ "grad_norm": 0.4486856162548065,
861
+ "learning_rate": 4.5660190497881455e-06,
862
+ "loss": 1.0784,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.46701471286188895,
867
+ "grad_norm": 0.4244840145111084,
868
+ "learning_rate": 4.557115718948622e-06,
869
+ "loss": 0.958,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.4708115804461319,
874
+ "grad_norm": 0.4413922429084778,
875
+ "learning_rate": 4.548130850881171e-06,
876
+ "loss": 1.2196,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.47460844803037494,
881
+ "grad_norm": 0.4678729772567749,
882
+ "learning_rate": 4.53906480171609e-06,
883
+ "loss": 1.1124,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.47840531561461797,
888
+ "grad_norm": 0.48969003558158875,
889
+ "learning_rate": 4.529917930801427e-06,
890
+ "loss": 1.2281,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.48220218319886093,
895
+ "grad_norm": 0.4379821717739105,
896
+ "learning_rate": 4.520690600688734e-06,
897
+ "loss": 1.0849,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.48599905078310396,
902
+ "grad_norm": 0.4471890330314636,
903
+ "learning_rate": 4.5113831771187e-06,
904
+ "loss": 1.0791,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.4897959183673469,
909
+ "grad_norm": 0.49659088253974915,
910
+ "learning_rate": 4.501996029006651e-06,
911
+ "loss": 1.097,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.49359278595158995,
916
+ "grad_norm": 0.4094451665878296,
917
+ "learning_rate": 4.492529528427929e-06,
918
+ "loss": 0.972,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4973896535358329,
923
+ "grad_norm": 0.4491405487060547,
924
+ "learning_rate": 4.4829840506031455e-06,
925
+ "loss": 1.0826,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.5011865211200759,
930
+ "grad_norm": 0.42457208037376404,
931
+ "learning_rate": 4.473359973883305e-06,
932
+ "loss": 1.1066,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.5049833887043189,
937
+ "grad_norm": 0.4856266379356384,
938
+ "learning_rate": 4.463657679734813e-06,
939
+ "loss": 1.225,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.5087802562885619,
944
+ "grad_norm": 0.47458940744400024,
945
+ "learning_rate": 4.453877552724352e-06,
946
+ "loss": 1.2234,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.512577123872805,
951
+ "grad_norm": 0.36578264832496643,
952
+ "learning_rate": 4.444019980503641e-06,
953
+ "loss": 0.9276,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.516373991457048,
958
+ "grad_norm": 0.4141775965690613,
959
+ "learning_rate": 4.4340853537940715e-06,
960
+ "loss": 1.0895,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.5201708590412909,
965
+ "grad_norm": 0.4604395031929016,
966
+ "learning_rate": 4.424074066371216e-06,
967
+ "loss": 1.2279,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.5239677266255339,
972
+ "grad_norm": 0.4443908929824829,
973
+ "learning_rate": 4.4139865150492235e-06,
974
+ "loss": 1.0862,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.527764594209777,
979
+ "grad_norm": 0.4457070529460907,
980
+ "learning_rate": 4.403823099665093e-06,
981
+ "loss": 1.2267,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.53156146179402,
986
+ "grad_norm": 0.4152843952178955,
987
+ "learning_rate": 4.393584223062819e-06,
988
+ "loss": 1.0827,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.5353583293782629,
993
+ "grad_norm": 0.42452365159988403,
994
+ "learning_rate": 4.38327029107743e-06,
995
+ "loss": 1.0743,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.5391551969625059,
1000
+ "grad_norm": 0.3921717703342438,
1001
+ "learning_rate": 4.372881712518898e-06,
1002
+ "loss": 0.9454,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.5429520645467489,
1007
+ "grad_norm": 0.5372737646102905,
1008
+ "learning_rate": 4.362418899155941e-06,
1009
+ "loss": 1.227,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.546748932130992,
1014
+ "grad_norm": 0.5399878621101379,
1015
+ "learning_rate": 4.351882265699696e-06,
1016
+ "loss": 1.2155,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.550545799715235,
1021
+ "grad_norm": 0.44373106956481934,
1022
+ "learning_rate": 4.341272229787281e-06,
1023
+ "loss": 1.0809,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.5543426672994779,
1028
+ "grad_norm": 0.4626406133174896,
1029
+ "learning_rate": 4.330589211965246e-06,
1030
+ "loss": 1.2145,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.5581395348837209,
1035
+ "grad_norm": 0.4238491356372833,
1036
+ "learning_rate": 4.319833635672899e-06,
1037
+ "loss": 1.0835,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.561936402467964,
1042
+ "grad_norm": 0.5245795249938965,
1043
+ "learning_rate": 4.309005927225528e-06,
1044
+ "loss": 1.222,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.565733270052207,
1049
+ "grad_norm": 0.43987414240837097,
1050
+ "learning_rate": 4.2981065157974955e-06,
1051
+ "loss": 0.9477,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.5695301376364499,
1056
+ "grad_norm": 0.4053569734096527,
1057
+ "learning_rate": 4.287135833405235e-06,
1058
+ "loss": 1.0717,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.5733270052206929,
1063
+ "grad_norm": 0.411527544260025,
1064
+ "learning_rate": 4.276094314890122e-06,
1065
+ "loss": 0.9402,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.5771238728049359,
1070
+ "grad_norm": 0.5262433290481567,
1071
+ "learning_rate": 4.2649823979012424e-06,
1072
+ "loss": 1.2261,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.580920740389179,
1077
+ "grad_norm": 0.44064462184906006,
1078
+ "learning_rate": 4.253800522878043e-06,
1079
+ "loss": 1.0823,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.584717607973422,
1084
+ "grad_norm": 0.4491995871067047,
1085
+ "learning_rate": 4.242549133032872e-06,
1086
+ "loss": 1.2246,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.5885144755576649,
1091
+ "grad_norm": 0.44037237763404846,
1092
+ "learning_rate": 4.2312286743334174e-06,
1093
+ "loss": 1.08,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.5923113431419079,
1098
+ "grad_norm": 0.4179958701133728,
1099
+ "learning_rate": 4.219839595485026e-06,
1100
+ "loss": 1.0792,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.5961082107261509,
1105
+ "grad_norm": 0.4985540509223938,
1106
+ "learning_rate": 4.2083823479129175e-06,
1107
+ "loss": 1.2162,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.599905078310394,
1112
+ "grad_norm": 0.43255966901779175,
1113
+ "learning_rate": 4.196857385744295e-06,
1114
+ "loss": 1.0821,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.6037019458946369,
1119
+ "grad_norm": 0.38958489894866943,
1120
+ "learning_rate": 4.185265165790343e-06,
1121
+ "loss": 0.93,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.6074988134788799,
1126
+ "grad_norm": 0.43625640869140625,
1127
+ "learning_rate": 4.17360614752812e-06,
1128
+ "loss": 1.0673,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.6112956810631229,
1133
+ "grad_norm": 0.3636965751647949,
1134
+ "learning_rate": 4.161880793082348e-06,
1135
+ "loss": 0.9311,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.615092548647366,
1140
+ "grad_norm": 0.41958415508270264,
1141
+ "learning_rate": 4.150089567207094e-06,
1142
+ "loss": 0.9723,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.6188894162316089,
1147
+ "grad_norm": 0.4178905189037323,
1148
+ "learning_rate": 4.138232937267351e-06,
1149
+ "loss": 0.9489,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.6226862838158519,
1154
+ "grad_norm": 0.4551599621772766,
1155
+ "learning_rate": 4.126311373220511e-06,
1156
+ "loss": 1.0803,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.6264831514000949,
1161
+ "grad_norm": 0.3745613992214203,
1162
+ "learning_rate": 4.114325347597736e-06,
1163
+ "loss": 0.9532,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.6302800189843379,
1168
+ "grad_norm": 0.4355705976486206,
1169
+ "learning_rate": 4.102275335485234e-06,
1170
+ "loss": 1.2055,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.634076886568581,
1175
+ "grad_norm": 0.43142765760421753,
1176
+ "learning_rate": 4.0901618145054246e-06,
1177
+ "loss": 1.216,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.6378737541528239,
1182
+ "grad_norm": 0.3976465165615082,
1183
+ "learning_rate": 4.077985264798004e-06,
1184
+ "loss": 0.9956,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.6416706217370669,
1189
+ "grad_norm": 0.4292868375778198,
1190
+ "learning_rate": 4.06574616900092e-06,
1191
+ "loss": 1.0555,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.6454674893213099,
1196
+ "grad_norm": 0.5177546143531799,
1197
+ "learning_rate": 4.053445012231241e-06,
1198
+ "loss": 1.2066,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.649264356905553,
1203
+ "grad_norm": 0.41628462076187134,
1204
+ "learning_rate": 4.041082282065922e-06,
1205
+ "loss": 1.21,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.6530612244897959,
1210
+ "grad_norm": 0.44618961215019226,
1211
+ "learning_rate": 4.028658468522489e-06,
1212
+ "loss": 1.2193,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.6568580920740389,
1217
+ "grad_norm": 0.44253483414649963,
1218
+ "learning_rate": 4.016174064039602e-06,
1219
+ "loss": 1.2155,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.6606549596582819,
1224
+ "grad_norm": 0.3929227292537689,
1225
+ "learning_rate": 4.003629563457551e-06,
1226
+ "loss": 1.0683,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.6644518272425249,
1231
+ "grad_norm": 0.5715161561965942,
1232
+ "learning_rate": 3.991025463998632e-06,
1233
+ "loss": 1.2264,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.668248694826768,
1238
+ "grad_norm": 0.4098718762397766,
1239
+ "learning_rate": 3.978362265247444e-06,
1240
+ "loss": 1.0723,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.6720455624110109,
1245
+ "grad_norm": 0.4266994595527649,
1246
+ "learning_rate": 3.965640469131084e-06,
1247
+ "loss": 1.0663,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.6758424299952539,
1252
+ "grad_norm": 0.379220187664032,
1253
+ "learning_rate": 3.952860579899257e-06,
1254
+ "loss": 0.9418,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.6796392975794969,
1259
+ "grad_norm": 0.3946760594844818,
1260
+ "learning_rate": 3.940023104104281e-06,
1261
+ "loss": 1.0605,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.68343616516374,
1266
+ "grad_norm": 0.47356459498405457,
1267
+ "learning_rate": 3.9271285505810185e-06,
1268
+ "loss": 1.0615,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.6872330327479829,
1273
+ "grad_norm": 0.4356970489025116,
1274
+ "learning_rate": 3.9141774304267e-06,
1275
+ "loss": 1.0714,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.6910299003322259,
1280
+ "grad_norm": 0.4237845540046692,
1281
+ "learning_rate": 3.9011702569806716e-06,
1282
+ "loss": 1.0862,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.6948267679164689,
1287
+ "grad_norm": 0.4926426410675049,
1288
+ "learning_rate": 3.888107545804043e-06,
1289
+ "loss": 1.2091,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.6986236355007119,
1294
+ "grad_norm": 0.43669024109840393,
1295
+ "learning_rate": 3.874989814659258e-06,
1296
+ "loss": 1.0805,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.702420503084955,
1301
+ "grad_norm": 0.435596227645874,
1302
+ "learning_rate": 3.861817583489566e-06,
1303
+ "loss": 1.2199,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.7062173706691979,
1308
+ "grad_norm": 0.407825231552124,
1309
+ "learning_rate": 3.848591374398421e-06,
1310
+ "loss": 1.1038,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.7100142382534409,
1315
+ "grad_norm": 0.41674646735191345,
1316
+ "learning_rate": 3.835311711628774e-06,
1317
+ "loss": 1.0718,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.7138111058376839,
1322
+ "grad_norm": 0.4335026144981384,
1323
+ "learning_rate": 3.82197912154231e-06,
1324
+ "loss": 1.0727,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.717607973421927,
1329
+ "grad_norm": 0.47680917382240295,
1330
+ "learning_rate": 3.808594132598574e-06,
1331
+ "loss": 1.2056,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.7214048410061699,
1336
+ "grad_norm": 0.38044315576553345,
1337
+ "learning_rate": 3.7951572753340273e-06,
1338
+ "loss": 0.9217,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.7252017085904129,
1343
+ "grad_norm": 0.4642685353755951,
1344
+ "learning_rate": 3.781669082341018e-06,
1345
+ "loss": 1.071,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.7289985761746559,
1350
+ "grad_norm": 0.4392843544483185,
1351
+ "learning_rate": 3.768130088246674e-06,
1352
+ "loss": 1.2135,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.7327954437588989,
1357
+ "grad_norm": 0.4412919580936432,
1358
+ "learning_rate": 3.7545408296917087e-06,
1359
+ "loss": 1.2025,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.736592311343142,
1364
+ "grad_norm": 0.4227074682712555,
1365
+ "learning_rate": 3.740901845309152e-06,
1366
+ "loss": 1.0674,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.7403891789273849,
1371
+ "grad_norm": 0.45686036348342896,
1372
+ "learning_rate": 3.727213675703e-06,
1373
+ "loss": 1.2151,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.7441860465116279,
1378
+ "grad_norm": 0.4000316262245178,
1379
+ "learning_rate": 3.713476863426787e-06,
1380
+ "loss": 1.0748,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.7479829140958709,
1385
+ "grad_norm": 0.42302843928337097,
1386
+ "learning_rate": 3.699691952962083e-06,
1387
+ "loss": 1.0892,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.751779781680114,
1392
+ "grad_norm": 0.4179258644580841,
1393
+ "learning_rate": 3.6858594906969073e-06,
1394
+ "loss": 1.0626,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.7555766492643569,
1399
+ "grad_norm": 0.4555260241031647,
1400
+ "learning_rate": 3.6719800249040778e-06,
1401
+ "loss": 1.2077,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.7593735168485999,
1406
+ "grad_norm": 0.36426669359207153,
1407
+ "learning_rate": 3.6580541057194728e-06,
1408
+ "loss": 0.944,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.7631703844328429,
1413
+ "grad_norm": 0.3654433786869049,
1414
+ "learning_rate": 3.6440822851202312e-06,
1415
+ "loss": 0.9322,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.7669672520170859,
1420
+ "grad_norm": 0.49382278323173523,
1421
+ "learning_rate": 3.63006511690287e-06,
1422
+ "loss": 1.2109,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.770764119601329,
1427
+ "grad_norm": 0.4325428307056427,
1428
+ "learning_rate": 3.616003156661334e-06,
1429
+ "loss": 1.0696,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.7745609871855719,
1434
+ "grad_norm": 0.4158753454685211,
1435
+ "learning_rate": 3.6018969617649784e-06,
1436
+ "loss": 1.0642,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.7783578547698149,
1441
+ "grad_norm": 0.4324316382408142,
1442
+ "learning_rate": 3.5877470913364697e-06,
1443
+ "loss": 1.2037,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.7821547223540579,
1448
+ "grad_norm": 0.46198171377182007,
1449
+ "learning_rate": 3.5735541062296287e-06,
1450
+ "loss": 1.0685,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.7859515899383009,
1455
+ "grad_norm": 0.43740782141685486,
1456
+ "learning_rate": 3.559318569007198e-06,
1457
+ "loss": 0.9377,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.7897484575225439,
1462
+ "grad_norm": 0.4424276351928711,
1463
+ "learning_rate": 3.545041043918546e-06,
1464
+ "loss": 1.2036,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.7935453251067869,
1469
+ "grad_norm": 0.4607738256454468,
1470
+ "learning_rate": 3.5307220968772983e-06,
1471
+ "loss": 1.2091,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.7973421926910299,
1476
+ "grad_norm": 0.4169575273990631,
1477
+ "learning_rate": 3.516362295438911e-06,
1478
+ "loss": 1.0704,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.8011390602752729,
1483
+ "grad_norm": 0.5177940130233765,
1484
+ "learning_rate": 3.501962208778172e-06,
1485
+ "loss": 1.2059,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.804935927859516,
1490
+ "grad_norm": 0.4142232835292816,
1491
+ "learning_rate": 3.487522407666641e-06,
1492
+ "loss": 1.0769,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.8087327954437589,
1497
+ "grad_norm": 0.4076462984085083,
1498
+ "learning_rate": 3.473043464450027e-06,
1499
+ "loss": 1.0677,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.8125296630280019,
1504
+ "grad_norm": 0.5051140785217285,
1505
+ "learning_rate": 3.458525953025503e-06,
1506
+ "loss": 1.0704,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.8163265306122449,
1511
+ "grad_norm": 0.37081989645957947,
1512
+ "learning_rate": 3.443970448818954e-06,
1513
+ "loss": 0.9524,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.8201233981964879,
1518
+ "grad_norm": 0.3888426423072815,
1519
+ "learning_rate": 3.429377528762177e-06,
1520
+ "loss": 1.0749,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.8239202657807309,
1525
+ "grad_norm": 0.49155759811401367,
1526
+ "learning_rate": 3.414747771270007e-06,
1527
+ "loss": 1.2125,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.8277171333649739,
1532
+ "grad_norm": 0.38015004992485046,
1533
+ "learning_rate": 3.40008175621739e-06,
1534
+ "loss": 1.0571,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.8315140009492169,
1539
+ "grad_norm": 0.4071613848209381,
1540
+ "learning_rate": 3.3853800649164053e-06,
1541
+ "loss": 1.053,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.8353108685334599,
1546
+ "grad_norm": 0.42250776290893555,
1547
+ "learning_rate": 3.3706432800932184e-06,
1548
+ "loss": 1.0685,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.8391077361177028,
1553
+ "grad_norm": 0.431573748588562,
1554
+ "learning_rate": 3.3558719858649835e-06,
1555
+ "loss": 1.0752,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.8429046037019459,
1560
+ "grad_norm": 0.46120485663414,
1561
+ "learning_rate": 3.341066767716697e-06,
1562
+ "loss": 1.2063,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.8467014712861889,
1567
+ "grad_norm": 0.4283529818058014,
1568
+ "learning_rate": 3.3262282124779823e-06,
1569
+ "loss": 1.0799,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.8504983388704319,
1574
+ "grad_norm": 0.37570565938949585,
1575
+ "learning_rate": 3.3113569082998367e-06,
1576
+ "loss": 1.0655,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.8542952064546749,
1581
+ "grad_norm": 0.2539384663105011,
1582
+ "learning_rate": 3.2964534446313163e-06,
1583
+ "loss": 0.4994,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.8580920740389179,
1588
+ "grad_norm": 0.4729446470737457,
1589
+ "learning_rate": 3.2815184121961725e-06,
1590
+ "loss": 1.2129,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.8618889416231609,
1595
+ "grad_norm": 0.3342674672603607,
1596
+ "learning_rate": 3.266552402969437e-06,
1597
+ "loss": 0.7854,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.8656858092074039,
1602
+ "grad_norm": 0.45071637630462646,
1603
+ "learning_rate": 3.251556010153958e-06,
1604
+ "loss": 1.2061,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.8694826767916469,
1609
+ "grad_norm": 0.4373473525047302,
1610
+ "learning_rate": 3.2365298281568913e-06,
1611
+ "loss": 1.0659,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.8732795443758898,
1616
+ "grad_norm": 0.42635422945022583,
1617
+ "learning_rate": 3.2214744525661336e-06,
1618
+ "loss": 1.2066,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.8770764119601329,
1623
+ "grad_norm": 0.45856305956840515,
1624
+ "learning_rate": 3.2063904801267184e-06,
1625
+ "loss": 1.1959,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.8808732795443759,
1630
+ "grad_norm": 0.4771096408367157,
1631
+ "learning_rate": 3.191278508717166e-06,
1632
+ "loss": 1.2025,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.8846701471286189,
1637
+ "grad_norm": 0.4655088484287262,
1638
+ "learning_rate": 3.176139137325781e-06,
1639
+ "loss": 1.2094,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.8884670147128619,
1644
+ "grad_norm": 0.39348939061164856,
1645
+ "learning_rate": 3.1609729660269114e-06,
1646
+ "loss": 1.0672,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.8922638822971048,
1651
+ "grad_norm": 0.445089727640152,
1652
+ "learning_rate": 3.1457805959571663e-06,
1653
+ "loss": 1.1994,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.8960607498813479,
1658
+ "grad_norm": 0.3999580144882202,
1659
+ "learning_rate": 3.130562629291586e-06,
1660
+ "loss": 1.0561,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.8998576174655909,
1665
+ "grad_norm": 0.4471660554409027,
1666
+ "learning_rate": 3.1153196692197747e-06,
1667
+ "loss": 1.0674,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.9036544850498339,
1672
+ "grad_norm": 0.4131118655204773,
1673
+ "learning_rate": 3.100052319921992e-06,
1674
+ "loss": 0.9328,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.9074513526340768,
1679
+ "grad_norm": 0.4657612144947052,
1680
+ "learning_rate": 3.0847611865452064e-06,
1681
+ "loss": 1.2085,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.9112482202183199,
1686
+ "grad_norm": 0.4662039577960968,
1687
+ "learning_rate": 3.069446875179106e-06,
1688
+ "loss": 1.2029,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.9150450878025629,
1693
+ "grad_norm": 0.41623374819755554,
1694
+ "learning_rate": 3.0541099928320806e-06,
1695
+ "loss": 0.9324,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.9188419553868059,
1700
+ "grad_norm": 0.4404604434967041,
1701
+ "learning_rate": 3.0387511474071556e-06,
1702
+ "loss": 1.0648,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.9226388229710489,
1707
+ "grad_norm": 0.3622177243232727,
1708
+ "learning_rate": 3.023370947677901e-06,
1709
+ "loss": 0.9238,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.9264356905552918,
1714
+ "grad_norm": 0.4089031517505646,
1715
+ "learning_rate": 3.007970003264301e-06,
1716
+ "loss": 1.0869,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.9302325581395349,
1721
+ "grad_norm": 0.4477076232433319,
1722
+ "learning_rate": 2.99254892460859e-06,
1723
+ "loss": 1.1983,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.9340294257237779,
1728
+ "grad_norm": 0.46868517994880676,
1729
+ "learning_rate": 2.9771083229510543e-06,
1730
+ "loss": 1.1963,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.9378262933080209,
1735
+ "grad_norm": 0.3464803397655487,
1736
+ "learning_rate": 2.9616488103058115e-06,
1737
+ "loss": 0.9272,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.9416231608922638,
1742
+ "grad_norm": 0.45595675706863403,
1743
+ "learning_rate": 2.9461709994365445e-06,
1744
+ "loss": 1.2056,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.9454200284765069,
1749
+ "grad_norm": 0.39231353998184204,
1750
+ "learning_rate": 2.930675503832217e-06,
1751
+ "loss": 1.0618,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.9492168960607499,
1756
+ "grad_norm": 0.3708343505859375,
1757
+ "learning_rate": 2.91516293768276e-06,
1758
+ "loss": 0.9102,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.9530137636449929,
1763
+ "grad_norm": 0.4427671432495117,
1764
+ "learning_rate": 2.899633915854721e-06,
1765
+ "loss": 1.2012,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.9568106312292359,
1770
+ "grad_norm": 0.33957725763320923,
1771
+ "learning_rate": 2.8840890538668955e-06,
1772
+ "loss": 0.8041,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.9606074988134788,
1777
+ "grad_norm": 0.3556421995162964,
1778
+ "learning_rate": 2.868528967865934e-06,
1779
+ "loss": 0.9198,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.9644043663977219,
1784
+ "grad_norm": 0.4399990439414978,
1785
+ "learning_rate": 2.8529542746019118e-06,
1786
+ "loss": 1.1998,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.9682012339819649,
1791
+ "grad_norm": 0.4560842514038086,
1792
+ "learning_rate": 2.8373655914038907e-06,
1793
+ "loss": 1.2007,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.9719981015662079,
1798
+ "grad_norm": 0.38949334621429443,
1799
+ "learning_rate": 2.821763536155446e-06,
1800
+ "loss": 1.0533,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.9757949691504508,
1805
+ "grad_norm": 0.40262502431869507,
1806
+ "learning_rate": 2.806148727270176e-06,
1807
+ "loss": 1.0585,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.9795918367346939,
1812
+ "grad_norm": 0.4113542139530182,
1813
+ "learning_rate": 2.7905217836671915e-06,
1814
+ "loss": 1.0601,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.9833887043189369,
1819
+ "grad_norm": 0.39467111229896545,
1820
+ "learning_rate": 2.774883324746583e-06,
1821
+ "loss": 1.0627,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.9871855719031799,
1826
+ "grad_norm": 0.4230286180973053,
1827
+ "learning_rate": 2.7592339703648696e-06,
1828
+ "loss": 1.2039,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.9909824394874229,
1833
+ "grad_norm": 0.3624156415462494,
1834
+ "learning_rate": 2.743574340810431e-06,
1835
+ "loss": 0.9253,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.9947793070716658,
1840
+ "grad_norm": 0.45184388756752014,
1841
+ "learning_rate": 2.7279050567789195e-06,
1842
+ "loss": 1.1943,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.9985761746559089,
1847
+ "grad_norm": 0.43259841203689575,
1848
+ "learning_rate": 2.7122267393486605e-06,
1849
+ "loss": 1.2086,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.0023730422401518,
1854
+ "grad_norm": 0.7363314628601074,
1855
+ "learning_rate": 2.6965400099560305e-06,
1856
+ "loss": 1.9312,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.0061699098243948,
1861
+ "grad_norm": 0.42088714241981506,
1862
+ "learning_rate": 2.6808454903708313e-06,
1863
+ "loss": 1.0671,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.0099667774086378,
1868
+ "grad_norm": 0.47700321674346924,
1869
+ "learning_rate": 2.66514380267164e-06,
1870
+ "loss": 1.2008,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.0137636449928809,
1875
+ "grad_norm": 0.40473899245262146,
1876
+ "learning_rate": 2.6494355692211537e-06,
1877
+ "loss": 1.0598,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.0175605125771239,
1882
+ "grad_norm": 0.40599343180656433,
1883
+ "learning_rate": 2.6337214126415237e-06,
1884
+ "loss": 1.0582,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.021357380161367,
1889
+ "grad_norm": 0.49867045879364014,
1890
+ "learning_rate": 2.6180019557896725e-06,
1891
+ "loss": 1.1879,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.02515424774561,
1896
+ "grad_norm": 0.432919442653656,
1897
+ "learning_rate": 2.6022778217326077e-06,
1898
+ "loss": 1.1843,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.028951115329853,
1903
+ "grad_norm": 0.40411439538002014,
1904
+ "learning_rate": 2.586549633722726e-06,
1905
+ "loss": 1.2015,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.032747982914096,
1910
+ "grad_norm": 0.4091154932975769,
1911
+ "learning_rate": 2.5708180151731105e-06,
1912
+ "loss": 1.0366,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.0365448504983388,
1917
+ "grad_norm": 0.41487744450569153,
1918
+ "learning_rate": 2.555083589632818e-06,
1919
+ "loss": 1.0597,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.0403417180825818,
1924
+ "grad_norm": 0.43414047360420227,
1925
+ "learning_rate": 2.5393469807621646e-06,
1926
+ "loss": 1.1722,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.0441385856668248,
1931
+ "grad_norm": 0.43517452478408813,
1932
+ "learning_rate": 2.523608812308009e-06,
1933
+ "loss": 1.1897,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.0479354532510678,
1938
+ "grad_norm": 0.41618216037750244,
1939
+ "learning_rate": 2.5078697080790248e-06,
1940
+ "loss": 1.0384,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.0517323208353109,
1945
+ "grad_norm": 0.3956233561038971,
1946
+ "learning_rate": 2.4921302919209765e-06,
1947
+ "loss": 1.0523,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.055529188419554,
1952
+ "grad_norm": 0.3869052231311798,
1953
+ "learning_rate": 2.476391187691992e-06,
1954
+ "loss": 1.0695,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.059326056003797,
1959
+ "grad_norm": 0.38108527660369873,
1960
+ "learning_rate": 2.4606530192378358e-06,
1961
+ "loss": 0.9268,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.06312292358804,
1966
+ "grad_norm": 0.40593841671943665,
1967
+ "learning_rate": 2.4449164103671834e-06,
1968
+ "loss": 1.0487,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.0669197911722827,
1973
+ "grad_norm": 0.35500654578208923,
1974
+ "learning_rate": 2.4291819848268908e-06,
1975
+ "loss": 0.9251,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.0707166587565258,
1980
+ "grad_norm": 0.40299785137176514,
1981
+ "learning_rate": 2.4134503662772754e-06,
1982
+ "loss": 1.0533,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.0745135263407688,
1987
+ "grad_norm": 0.43219995498657227,
1988
+ "learning_rate": 2.3977221782673936e-06,
1989
+ "loss": 1.1866,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.0783103939250118,
1994
+ "grad_norm": 0.45522886514663696,
1995
+ "learning_rate": 2.3819980442103288e-06,
1996
+ "loss": 1.2028,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.0821072615092548,
2001
+ "grad_norm": 0.4167502522468567,
2002
+ "learning_rate": 2.3662785873584775e-06,
2003
+ "loss": 1.0328,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.0859041290934979,
2008
+ "grad_norm": 0.402190238237381,
2009
+ "learning_rate": 2.350564430778847e-06,
2010
+ "loss": 1.0613,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.089700996677741,
2015
+ "grad_norm": 0.36273133754730225,
2016
+ "learning_rate": 2.3348561973283613e-06,
2017
+ "loss": 0.9201,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.093497864261984,
2022
+ "grad_norm": 0.41140493750572205,
2023
+ "learning_rate": 2.31915450962917e-06,
2024
+ "loss": 1.0598,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.097294731846227,
2029
+ "grad_norm": 0.3959132730960846,
2030
+ "learning_rate": 2.3034599900439703e-06,
2031
+ "loss": 1.0547,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.10109159943047,
2036
+ "grad_norm": 0.43085983395576477,
2037
+ "learning_rate": 2.2877732606513407e-06,
2038
+ "loss": 1.1836,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.1048884670147128,
2043
+ "grad_norm": 0.37919700145721436,
2044
+ "learning_rate": 2.2720949432210813e-06,
2045
+ "loss": 1.0431,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.1086853345989558,
2050
+ "grad_norm": 0.3869677186012268,
2051
+ "learning_rate": 2.2564256591895695e-06,
2052
+ "loss": 0.9199,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.1124822021831988,
2057
+ "grad_norm": 0.40192729234695435,
2058
+ "learning_rate": 2.2407660296351313e-06,
2059
+ "loss": 0.9259,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.1162790697674418,
2064
+ "grad_norm": 0.41164687275886536,
2065
+ "learning_rate": 2.225116675253418e-06,
2066
+ "loss": 1.0489,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.1200759373516849,
2071
+ "grad_norm": 0.3917531371116638,
2072
+ "learning_rate": 2.209478216332809e-06,
2073
+ "loss": 1.0493,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.123872804935928,
2078
+ "grad_norm": 0.3413256108760834,
2079
+ "learning_rate": 2.193851272729825e-06,
2080
+ "loss": 0.9091,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 1.127669672520171,
2085
+ "grad_norm": 0.4337766170501709,
2086
+ "learning_rate": 2.1782364638445545e-06,
2087
+ "loss": 1.191,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 1.131466540104414,
2092
+ "grad_norm": 0.42421215772628784,
2093
+ "learning_rate": 2.16263440859611e-06,
2094
+ "loss": 1.1943,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 1.1352634076886567,
2099
+ "grad_norm": 0.38704779744148254,
2100
+ "learning_rate": 2.1470457253980887e-06,
2101
+ "loss": 1.1828,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 1.1390602752728998,
2106
+ "grad_norm": 0.38762617111206055,
2107
+ "learning_rate": 2.131471032134067e-06,
2108
+ "loss": 1.0479,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 1.1428571428571428,
2113
+ "grad_norm": 0.3805724084377289,
2114
+ "learning_rate": 2.115910946133105e-06,
2115
+ "loss": 1.049,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 1.1466540104413858,
2120
+ "grad_norm": 0.38618871569633484,
2121
+ "learning_rate": 2.10036608414528e-06,
2122
+ "loss": 1.0566,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 1.1504508780256288,
2127
+ "grad_norm": 0.32153603434562683,
2128
+ "learning_rate": 2.084837062317241e-06,
2129
+ "loss": 0.7648,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 1.1542477456098719,
2134
+ "grad_norm": 0.4316171109676361,
2135
+ "learning_rate": 2.0693244961677834e-06,
2136
+ "loss": 1.183,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 1.158044613194115,
2141
+ "grad_norm": 0.3866140842437744,
2142
+ "learning_rate": 2.0538290005634564e-06,
2143
+ "loss": 1.1986,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 1.161841480778358,
2148
+ "grad_norm": 0.41327404975891113,
2149
+ "learning_rate": 2.0383511896941894e-06,
2150
+ "loss": 1.1974,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 1.165638348362601,
2155
+ "grad_norm": 0.37834978103637695,
2156
+ "learning_rate": 2.0228916770489466e-06,
2157
+ "loss": 1.0443,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 1.169435215946844,
2162
+ "grad_norm": 0.41474854946136475,
2163
+ "learning_rate": 2.0074510753914113e-06,
2164
+ "loss": 1.1803,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 1.1732320835310868,
2169
+ "grad_norm": 0.3727324306964874,
2170
+ "learning_rate": 1.9920299967356995e-06,
2171
+ "loss": 1.055,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 1.1770289511153298,
2176
+ "grad_norm": 0.40379658341407776,
2177
+ "learning_rate": 1.9766290523220997e-06,
2178
+ "loss": 1.2038,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 1.1808258186995728,
2183
+ "grad_norm": 0.39679378271102905,
2184
+ "learning_rate": 1.9612488525928453e-06,
2185
+ "loss": 1.1826,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 1.1846226862838158,
2190
+ "grad_norm": 0.4498043954372406,
2191
+ "learning_rate": 1.94589000716792e-06,
2192
+ "loss": 1.1875,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 1.1884195538680589,
2197
+ "grad_norm": 0.41798946261405945,
2198
+ "learning_rate": 1.9305531248208948e-06,
2199
+ "loss": 1.1847,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 1.1922164214523019,
2204
+ "grad_norm": 0.42096462845802307,
2205
+ "learning_rate": 1.9152388134547944e-06,
2206
+ "loss": 1.059,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 1.196013289036545,
2211
+ "grad_norm": 0.3939502537250519,
2212
+ "learning_rate": 1.8999476800780087e-06,
2213
+ "loss": 1.0457,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 1.199810156620788,
2218
+ "grad_norm": 0.44725000858306885,
2219
+ "learning_rate": 1.8846803307802263e-06,
2220
+ "loss": 1.1939,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 1.2036070242050307,
2225
+ "grad_norm": 0.3450300097465515,
2226
+ "learning_rate": 1.8694373707084148e-06,
2227
+ "loss": 0.9045,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 1.2074038917892738,
2232
+ "grad_norm": 0.4713125228881836,
2233
+ "learning_rate": 1.854219404042834e-06,
2234
+ "loss": 1.1848,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 1.2112007593735168,
2239
+ "grad_norm": 0.33273351192474365,
2240
+ "learning_rate": 1.8390270339730892e-06,
2241
+ "loss": 0.7687,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 1.2149976269577598,
2246
+ "grad_norm": 0.35393235087394714,
2247
+ "learning_rate": 1.82386086267422e-06,
2248
+ "loss": 0.9687,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 1.2187944945420028,
2253
+ "grad_norm": 0.35949307680130005,
2254
+ "learning_rate": 1.8087214912828343e-06,
2255
+ "loss": 0.9033,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 1.2225913621262459,
2260
+ "grad_norm": 0.42038631439208984,
2261
+ "learning_rate": 1.793609519873282e-06,
2262
+ "loss": 1.1888,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 1.2263882297104889,
2267
+ "grad_norm": 0.4522581696510315,
2268
+ "learning_rate": 1.7785255474338675e-06,
2269
+ "loss": 1.188,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 1.230185097294732,
2274
+ "grad_norm": 0.3686380386352539,
2275
+ "learning_rate": 1.763470171843109e-06,
2276
+ "loss": 1.0683,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 1.233981964878975,
2281
+ "grad_norm": 0.4130842685699463,
2282
+ "learning_rate": 1.748443989846042e-06,
2283
+ "loss": 1.1772,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 1.237778832463218,
2288
+ "grad_norm": 0.3096576929092407,
2289
+ "learning_rate": 1.7334475970305639e-06,
2290
+ "loss": 0.767,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 1.2415757000474608,
2295
+ "grad_norm": 0.3671686351299286,
2296
+ "learning_rate": 1.718481587803828e-06,
2297
+ "loss": 0.9131,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 1.2453725676317038,
2302
+ "grad_norm": 0.4213862717151642,
2303
+ "learning_rate": 1.7035465553686839e-06,
2304
+ "loss": 1.1863,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 1.2491694352159468,
2309
+ "grad_norm": 0.3827097713947296,
2310
+ "learning_rate": 1.688643091700164e-06,
2311
+ "loss": 1.0456,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 1.2529663028001898,
2316
+ "grad_norm": 0.3981434106826782,
2317
+ "learning_rate": 1.6737717875220177e-06,
2318
+ "loss": 1.0414,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 1.2567631703844329,
2323
+ "grad_norm": 0.3808799982070923,
2324
+ "learning_rate": 1.6589332322833035e-06,
2325
+ "loss": 1.0457,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 1.2605600379686759,
2330
+ "grad_norm": 0.39812132716178894,
2331
+ "learning_rate": 1.6441280141350169e-06,
2332
+ "loss": 1.0624,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 1.264356905552919,
2337
+ "grad_norm": 0.3926783502101898,
2338
+ "learning_rate": 1.6293567199067827e-06,
2339
+ "loss": 1.1868,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 1.2681537731371617,
2344
+ "grad_norm": 0.42180249094963074,
2345
+ "learning_rate": 1.6146199350835956e-06,
2346
+ "loss": 1.1785,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 1.2719506407214047,
2351
+ "grad_norm": 0.3862990736961365,
2352
+ "learning_rate": 1.5999182437826111e-06,
2353
+ "loss": 1.0557,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 1.2757475083056478,
2358
+ "grad_norm": 0.33035123348236084,
2359
+ "learning_rate": 1.5852522287299946e-06,
2360
+ "loss": 0.9202,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 1.2795443758898908,
2365
+ "grad_norm": 0.3912082612514496,
2366
+ "learning_rate": 1.5706224712378237e-06,
2367
+ "loss": 1.0578,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 1.2833412434741338,
2372
+ "grad_norm": 0.368190199136734,
2373
+ "learning_rate": 1.5560295511810465e-06,
2374
+ "loss": 1.0456,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 1.2871381110583768,
2379
+ "grad_norm": 0.3697574734687805,
2380
+ "learning_rate": 1.5414740469744986e-06,
2381
+ "loss": 1.0412,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 1.2909349786426199,
2386
+ "grad_norm": 0.3395715057849884,
2387
+ "learning_rate": 1.5269565355499738e-06,
2388
+ "loss": 0.9436,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 1.2947318462268629,
2393
+ "grad_norm": 0.38877978920936584,
2394
+ "learning_rate": 1.5124775923333604e-06,
2395
+ "loss": 1.0565,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 1.298528713811106,
2400
+ "grad_norm": 0.3653126060962677,
2401
+ "learning_rate": 1.4980377912218291e-06,
2402
+ "loss": 1.0534,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 1.302325581395349,
2407
+ "grad_norm": 0.403150737285614,
2408
+ "learning_rate": 1.4836377045610903e-06,
2409
+ "loss": 1.063,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 1.306122448979592,
2414
+ "grad_norm": 0.3969637155532837,
2415
+ "learning_rate": 1.4692779031227032e-06,
2416
+ "loss": 1.1949,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 1.3099193165638348,
2421
+ "grad_norm": 0.3859919607639313,
2422
+ "learning_rate": 1.4549589560814558e-06,
2423
+ "loss": 1.0345,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 1.3137161841480778,
2428
+ "grad_norm": 0.3501088321208954,
2429
+ "learning_rate": 1.440681430992803e-06,
2430
+ "loss": 1.0387,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 1.3175130517323208,
2435
+ "grad_norm": 0.38995981216430664,
2436
+ "learning_rate": 1.4264458937703717e-06,
2437
+ "loss": 1.0632,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 1.3213099193165638,
2442
+ "grad_norm": 0.3388945460319519,
2443
+ "learning_rate": 1.4122529086635312e-06,
2444
+ "loss": 0.9119,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 1.3251067869008069,
2449
+ "grad_norm": 0.37815216183662415,
2450
+ "learning_rate": 1.398103038235022e-06,
2451
+ "loss": 1.1801,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 1.3289036544850499,
2456
+ "grad_norm": 0.3603959381580353,
2457
+ "learning_rate": 1.3839968433386659e-06,
2458
+ "loss": 1.0401,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 1.332700522069293,
2463
+ "grad_norm": 0.4169382154941559,
2464
+ "learning_rate": 1.3699348830971316e-06,
2465
+ "loss": 1.1889,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 1.3364973896535357,
2470
+ "grad_norm": 0.4009808599948883,
2471
+ "learning_rate": 1.3559177148797698e-06,
2472
+ "loss": 1.1802,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 1.3402942572377787,
2477
+ "grad_norm": 0.3702283203601837,
2478
+ "learning_rate": 1.3419458942805274e-06,
2479
+ "loss": 0.9253,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 1.3440911248220218,
2484
+ "grad_norm": 0.3447802662849426,
2485
+ "learning_rate": 1.3280199750959233e-06,
2486
+ "loss": 0.9254,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 1.3478879924062648,
2491
+ "grad_norm": 0.40221476554870605,
2492
+ "learning_rate": 1.314140509303093e-06,
2493
+ "loss": 1.0729,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 1.3516848599905078,
2498
+ "grad_norm": 0.40008315443992615,
2499
+ "learning_rate": 1.3003080470379176e-06,
2500
+ "loss": 1.1839,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 1.3554817275747508,
2505
+ "grad_norm": 0.4559074640274048,
2506
+ "learning_rate": 1.2865231365732136e-06,
2507
+ "loss": 1.184,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 1.3592785951589939,
2512
+ "grad_norm": 0.3520359694957733,
2513
+ "learning_rate": 1.2727863242970007e-06,
2514
+ "loss": 0.9056,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 1.3630754627432369,
2519
+ "grad_norm": 0.39236965775489807,
2520
+ "learning_rate": 1.2590981546908481e-06,
2521
+ "loss": 1.1798,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 1.36687233032748,
2526
+ "grad_norm": 0.39921608567237854,
2527
+ "learning_rate": 1.245459170308292e-06,
2528
+ "loss": 1.1876,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 1.370669197911723,
2533
+ "grad_norm": 0.32645294070243835,
2534
+ "learning_rate": 1.2318699117533264e-06,
2535
+ "loss": 0.9214,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 1.374466065495966,
2540
+ "grad_norm": 0.3884054720401764,
2541
+ "learning_rate": 1.2183309176589822e-06,
2542
+ "loss": 1.1828,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 1.3782629330802088,
2547
+ "grad_norm": 0.3472171425819397,
2548
+ "learning_rate": 1.2048427246659738e-06,
2549
+ "loss": 0.9014,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 1.3820598006644518,
2554
+ "grad_norm": 0.34238362312316895,
2555
+ "learning_rate": 1.1914058674014264e-06,
2556
+ "loss": 0.9166,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 1.3858566682486948,
2561
+ "grad_norm": 0.4093136489391327,
2562
+ "learning_rate": 1.17802087845769e-06,
2563
+ "loss": 1.1757,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 1.3896535358329378,
2568
+ "grad_norm": 0.4089086949825287,
2569
+ "learning_rate": 1.164688288371227e-06,
2570
+ "loss": 1.1898,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 1.3934504034171808,
2575
+ "grad_norm": 0.36652591824531555,
2576
+ "learning_rate": 1.1514086256015803e-06,
2577
+ "loss": 1.0574,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 1.3972472710014239,
2582
+ "grad_norm": 0.3458910584449768,
2583
+ "learning_rate": 1.138182416510434e-06,
2584
+ "loss": 1.0404,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 1.401044138585667,
2589
+ "grad_norm": 0.403898149728775,
2590
+ "learning_rate": 1.1250101853407427e-06,
2591
+ "loss": 1.185,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 1.4048410061699097,
2596
+ "grad_norm": 0.38953447341918945,
2597
+ "learning_rate": 1.1118924541959573e-06,
2598
+ "loss": 1.1767,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 1.4086378737541527,
2603
+ "grad_norm": 0.41569021344184875,
2604
+ "learning_rate": 1.09882974301933e-06,
2605
+ "loss": 1.1867,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 1.4124347413383957,
2610
+ "grad_norm": 0.3661198019981384,
2611
+ "learning_rate": 1.0858225695733006e-06,
2612
+ "loss": 1.0516,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 1.4162316089226388,
2617
+ "grad_norm": 0.40183043479919434,
2618
+ "learning_rate": 1.072871449418982e-06,
2619
+ "loss": 1.0376,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 1.4200284765068818,
2624
+ "grad_norm": 0.3806290030479431,
2625
+ "learning_rate": 1.0599768958957193e-06,
2626
+ "loss": 1.0473,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 1.4238253440911248,
2631
+ "grad_norm": 0.3974708616733551,
2632
+ "learning_rate": 1.0471394201007435e-06,
2633
+ "loss": 1.1799,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 1.4276222116753678,
2638
+ "grad_norm": 0.37168920040130615,
2639
+ "learning_rate": 1.0343595308689156e-06,
2640
+ "loss": 1.0478,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 1.4314190792596109,
2645
+ "grad_norm": 0.36702632904052734,
2646
+ "learning_rate": 1.021637734752557e-06,
2647
+ "loss": 1.0368,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 1.435215946843854,
2652
+ "grad_norm": 0.36013931035995483,
2653
+ "learning_rate": 1.0089745360013685e-06,
2654
+ "loss": 1.0488,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 1.439012814428097,
2659
+ "grad_norm": 0.39848053455352783,
2660
+ "learning_rate": 9.963704365424494e-07,
2661
+ "loss": 1.0501,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 1.44280968201234,
2666
+ "grad_norm": 0.3630136549472809,
2667
+ "learning_rate": 9.838259359603987e-07,
2668
+ "loss": 1.0455,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 1.4466065495965827,
2673
+ "grad_norm": 0.38877931237220764,
2674
+ "learning_rate": 9.713415314775122e-07,
2675
+ "loss": 1.1887,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 1.4504034171808258,
2680
+ "grad_norm": 0.3823590874671936,
2681
+ "learning_rate": 9.589177179340775e-07,
2682
+ "loss": 1.1795,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 1.4542002847650688,
2687
+ "grad_norm": 0.31407251954078674,
2688
+ "learning_rate": 9.465549877687602e-07,
2689
+ "loss": 0.8088,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 1.4579971523493118,
2694
+ "grad_norm": 0.3785543143749237,
2695
+ "learning_rate": 9.342538309990804e-07,
2696
+ "loss": 1.0545,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 1.4617940199335548,
2701
+ "grad_norm": 0.3719753921031952,
2702
+ "learning_rate": 9.220147352019965e-07,
2703
+ "loss": 1.1924,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 1.4655908875177979,
2708
+ "grad_norm": 0.3974050283432007,
2709
+ "learning_rate": 9.098381854945762e-07,
2710
+ "loss": 1.0512,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 1.469387755102041,
2715
+ "grad_norm": 0.380188912153244,
2716
+ "learning_rate": 8.977246645147655e-07,
2717
+ "loss": 1.1842,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 1.4731846226862837,
2722
+ "grad_norm": 0.33522146940231323,
2723
+ "learning_rate": 8.856746524022647e-07,
2724
+ "loss": 0.9293,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 1.4769814902705267,
2729
+ "grad_norm": 0.34948912262916565,
2730
+ "learning_rate": 8.736886267794911e-07,
2731
+ "loss": 1.0576,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 1.4807783578547697,
2736
+ "grad_norm": 0.3386431336402893,
2737
+ "learning_rate": 8.617670627326503e-07,
2738
+ "loss": 0.9029,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 1.4845752254390128,
2743
+ "grad_norm": 0.32754087448120117,
2744
+ "learning_rate": 8.49910432792907e-07,
2745
+ "loss": 0.9201,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 1.4883720930232558,
2750
+ "grad_norm": 0.38169023394584656,
2751
+ "learning_rate": 8.381192069176539e-07,
2752
+ "loss": 1.1824,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 1.4921689606074988,
2757
+ "grad_norm": 0.3721928596496582,
2758
+ "learning_rate": 8.263938524718812e-07,
2759
+ "loss": 1.0526,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 1.4959658281917418,
2764
+ "grad_norm": 0.3896506130695343,
2765
+ "learning_rate": 8.147348342096579e-07,
2766
+ "loss": 1.1811,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 1.4997626957759849,
2771
+ "grad_norm": 0.3741244375705719,
2772
+ "learning_rate": 8.031426142557061e-07,
2773
+ "loss": 1.0512,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 1.503559563360228,
2778
+ "grad_norm": 0.3273400366306305,
2779
+ "learning_rate": 7.916176520870836e-07,
2780
+ "loss": 0.905,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 1.507356430944471,
2785
+ "grad_norm": 0.3622443675994873,
2786
+ "learning_rate": 7.80160404514975e-07,
2787
+ "loss": 1.0561,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 1.511153298528714,
2792
+ "grad_norm": 0.3936561048030853,
2793
+ "learning_rate": 7.687713256665835e-07,
2794
+ "loss": 1.1887,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 1.514950166112957,
2799
+ "grad_norm": 0.37885287404060364,
2800
+ "learning_rate": 7.574508669671288e-07,
2801
+ "loss": 1.185,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 1.5187470336971998,
2806
+ "grad_norm": 0.36686670780181885,
2807
+ "learning_rate": 7.46199477121958e-07,
2808
+ "loss": 1.1886,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 1.5225439012814428,
2813
+ "grad_norm": 0.3786951005458832,
2814
+ "learning_rate": 7.350176020987585e-07,
2815
+ "loss": 1.1841,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 1.5263407688656858,
2820
+ "grad_norm": 0.3833267390727997,
2821
+ "learning_rate": 7.239056851098785e-07,
2822
+ "loss": 1.191,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 1.5301376364499288,
2827
+ "grad_norm": 0.2992788553237915,
2828
+ "learning_rate": 7.128641665947658e-07,
2829
+ "loss": 0.7744,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 1.5339345040341716,
2834
+ "grad_norm": 0.379607230424881,
2835
+ "learning_rate": 7.018934842025058e-07,
2836
+ "loss": 1.1837,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 1.5377313716184147,
2841
+ "grad_norm": 0.3761638104915619,
2842
+ "learning_rate": 6.90994072774473e-07,
2843
+ "loss": 1.0384,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 1.5415282392026577,
2848
+ "grad_norm": 0.405567467212677,
2849
+ "learning_rate": 6.801663643271012e-07,
2850
+ "loss": 1.1853,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 1.5453251067869007,
2855
+ "grad_norm": 0.3884119987487793,
2856
+ "learning_rate": 6.69410788034755e-07,
2857
+ "loss": 1.1932,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 1.5491219743711437,
2862
+ "grad_norm": 0.35525161027908325,
2863
+ "learning_rate": 6.587277702127196e-07,
2864
+ "loss": 1.0483,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 1.5529188419553868,
2869
+ "grad_norm": 0.3150971829891205,
2870
+ "learning_rate": 6.481177343003043e-07,
2871
+ "loss": 0.9127,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 1.5567157095396298,
2876
+ "grad_norm": 0.39407217502593994,
2877
+ "learning_rate": 6.375811008440591e-07,
2878
+ "loss": 1.179,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 1.5605125771238728,
2883
+ "grad_norm": 0.402775377035141,
2884
+ "learning_rate": 6.271182874811024e-07,
2885
+ "loss": 1.0475,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 1.5643094447081158,
2890
+ "grad_norm": 0.3489883840084076,
2891
+ "learning_rate": 6.167297089225713e-07,
2892
+ "loss": 0.9048,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 1.5681063122923589,
2897
+ "grad_norm": 0.35091614723205566,
2898
+ "learning_rate": 6.064157769371823e-07,
2899
+ "loss": 1.0413,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 1.5719031798766019,
2904
+ "grad_norm": 0.35318344831466675,
2905
+ "learning_rate": 5.961769003349077e-07,
2906
+ "loss": 1.0326,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 1.575700047460845,
2911
+ "grad_norm": 0.3418586850166321,
2912
+ "learning_rate": 5.860134849507765e-07,
2913
+ "loss": 0.9169,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 1.579496915045088,
2918
+ "grad_norm": 0.35626721382141113,
2919
+ "learning_rate": 5.759259336287851e-07,
2920
+ "loss": 1.0404,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 1.583293782629331,
2925
+ "grad_norm": 0.3962875306606293,
2926
+ "learning_rate": 5.659146462059292e-07,
2927
+ "loss": 1.1874,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 1.5870906502135738,
2932
+ "grad_norm": 0.3754862844944,
2933
+ "learning_rate": 5.559800194963591e-07,
2934
+ "loss": 1.1858,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 1.5908875177978168,
2939
+ "grad_norm": 0.37421101331710815,
2940
+ "learning_rate": 5.46122447275649e-07,
2941
+ "loss": 1.1813,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 1.5946843853820598,
2946
+ "grad_norm": 0.3670285642147064,
2947
+ "learning_rate": 5.363423202651876e-07,
2948
+ "loss": 1.0544,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 1.5984812529663028,
2953
+ "grad_norm": 0.42034921050071716,
2954
+ "learning_rate": 5.266400261166951e-07,
2955
+ "loss": 1.1884,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 1.6022781205505456,
2960
+ "grad_norm": 0.3546159565448761,
2961
+ "learning_rate": 5.170159493968549e-07,
2962
+ "loss": 1.1814,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 1.6060749881347887,
2967
+ "grad_norm": 0.3211246728897095,
2968
+ "learning_rate": 5.074704715720711e-07,
2969
+ "loss": 0.9178,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 1.6098718557190317,
2974
+ "grad_norm": 0.3514634370803833,
2975
+ "learning_rate": 4.980039709933492e-07,
2976
+ "loss": 0.913,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 1.6136687233032747,
2981
+ "grad_norm": 0.4017420709133148,
2982
+ "learning_rate": 4.886168228813007e-07,
2983
+ "loss": 1.1828,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 1.6174655908875177,
2988
+ "grad_norm": 0.3313949406147003,
2989
+ "learning_rate": 4.793093993112663e-07,
2990
+ "loss": 0.9082,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 1.6212624584717608,
2995
+ "grad_norm": 0.33639460802078247,
2996
+ "learning_rate": 4.700820691985739e-07,
2997
+ "loss": 0.9069,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 1.6250593260560038,
3002
+ "grad_norm": 0.3237963616847992,
3003
+ "learning_rate": 4.6093519828391025e-07,
3004
+ "loss": 0.894,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 1.6288561936402468,
3009
+ "grad_norm": 0.3815336525440216,
3010
+ "learning_rate": 4.51869149118829e-07,
3011
+ "loss": 1.1764,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 1.6326530612244898,
3016
+ "grad_norm": 0.36702704429626465,
3017
+ "learning_rate": 4.428842810513784e-07,
3018
+ "loss": 1.1678,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 1.6364499288087329,
3023
+ "grad_norm": 0.3530699610710144,
3024
+ "learning_rate": 4.3398095021185557e-07,
3025
+ "loss": 1.1782,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 1.6402467963929759,
3030
+ "grad_norm": 0.33500173687934875,
3031
+ "learning_rate": 4.251595094986957e-07,
3032
+ "loss": 1.0625,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 1.644043663977219,
3037
+ "grad_norm": 0.37163975834846497,
3038
+ "learning_rate": 4.1642030856448104e-07,
3039
+ "loss": 1.1739,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 1.647840531561462,
3044
+ "grad_norm": 0.37387996912002563,
3045
+ "learning_rate": 4.077636938020807e-07,
3046
+ "loss": 1.0592,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 1.651637399145705,
3051
+ "grad_norm": 0.3629416823387146,
3052
+ "learning_rate": 3.991900083309241e-07,
3053
+ "loss": 1.1718,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 1.6554342667299478,
3058
+ "grad_norm": 0.3603303134441376,
3059
+ "learning_rate": 3.906995919833997e-07,
3060
+ "loss": 1.0432,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 1.6592311343141908,
3065
+ "grad_norm": 0.31616950035095215,
3066
+ "learning_rate": 3.8229278129138293e-07,
3067
+ "loss": 0.9182,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 1.6630280018984338,
3072
+ "grad_norm": 0.3574075698852539,
3073
+ "learning_rate": 3.739699094729002e-07,
3074
+ "loss": 1.0423,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 1.6668248694826768,
3079
+ "grad_norm": 0.33015620708465576,
3080
+ "learning_rate": 3.6573130641892053e-07,
3081
+ "loss": 0.8927,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 1.6706217370669196,
3086
+ "grad_norm": 0.32390230894088745,
3087
+ "learning_rate": 3.575772986802775e-07,
3088
+ "loss": 0.9272,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 1.6744186046511627,
3093
+ "grad_norm": 0.37338370084762573,
3094
+ "learning_rate": 3.4950820945472945e-07,
3095
+ "loss": 1.1717,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 1.6782154722354057,
3100
+ "grad_norm": 0.35633939504623413,
3101
+ "learning_rate": 3.4152435857414676e-07,
3102
+ "loss": 1.1792,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 1.6820123398196487,
3107
+ "grad_norm": 0.35473427176475525,
3108
+ "learning_rate": 3.3362606249183446e-07,
3109
+ "loss": 1.0391,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 1.6858092074038917,
3114
+ "grad_norm": 0.36706259846687317,
3115
+ "learning_rate": 3.2581363426998966e-07,
3116
+ "loss": 1.0463,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 1.6896060749881348,
3121
+ "grad_norm": 0.3562609553337097,
3122
+ "learning_rate": 3.18087383567294e-07,
3123
+ "loss": 1.0515,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 1.6934029425723778,
3128
+ "grad_norm": 0.35783901810646057,
3129
+ "learning_rate": 3.1044761662663933e-07,
3130
+ "loss": 1.0449,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 1.6971998101566208,
3135
+ "grad_norm": 0.3588060736656189,
3136
+ "learning_rate": 3.0289463626298585e-07,
3137
+ "loss": 1.1823,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 1.7009966777408638,
3142
+ "grad_norm": 0.35698550939559937,
3143
+ "learning_rate": 2.9542874185136545e-07,
3144
+ "loss": 1.1792,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 1.7047935453251069,
3149
+ "grad_norm": 0.37660661339759827,
3150
+ "learning_rate": 2.880502293150117e-07,
3151
+ "loss": 1.1868,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 1.7085904129093499,
3156
+ "grad_norm": 0.38808876276016235,
3157
+ "learning_rate": 2.8075939111362915e-07,
3158
+ "loss": 1.1823,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 1.712387280493593,
3163
+ "grad_norm": 0.35739246010780334,
3164
+ "learning_rate": 2.7355651623180574e-07,
3165
+ "loss": 1.1793,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 1.716184148077836,
3170
+ "grad_norm": 0.3609924018383026,
3171
+ "learning_rate": 2.6644189016755415e-07,
3172
+ "loss": 1.0662,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 1.719981015662079,
3177
+ "grad_norm": 0.3684343099594116,
3178
+ "learning_rate": 2.5941579492099853e-07,
3179
+ "loss": 1.1712,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 1.7237778832463218,
3184
+ "grad_norm": 0.3490484952926636,
3185
+ "learning_rate": 2.524785089831955e-07,
3186
+ "loss": 1.0555,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 1.7275747508305648,
3191
+ "grad_norm": 0.32522618770599365,
3192
+ "learning_rate": 2.456303073250943e-07,
3193
+ "loss": 0.9226,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 1.7313716184148078,
3198
+ "grad_norm": 0.38961344957351685,
3199
+ "learning_rate": 2.388714613866422e-07,
3200
+ "loss": 1.1842,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 1.7351684859990508,
3205
+ "grad_norm": 0.35974937677383423,
3206
+ "learning_rate": 2.3220223906602113e-07,
3207
+ "loss": 1.0626,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 1.7389653535832936,
3212
+ "grad_norm": 0.3246191143989563,
3213
+ "learning_rate": 2.2562290470903082e-07,
3214
+ "loss": 0.9113,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 1.7427622211675367,
3219
+ "grad_norm": 0.3299662172794342,
3220
+ "learning_rate": 2.191337190986112e-07,
3221
+ "loss": 0.9153,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 1.7465590887517797,
3226
+ "grad_norm": 0.38010498881340027,
3227
+ "learning_rate": 2.1273493944450634e-07,
3228
+ "loss": 1.1955,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 1.7503559563360227,
3233
+ "grad_norm": 0.38703298568725586,
3234
+ "learning_rate": 2.06426819373067e-07,
3235
+ "loss": 1.1757,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 1.7541528239202657,
3240
+ "grad_norm": 0.294664204120636,
3241
+ "learning_rate": 2.0020960891720147e-07,
3242
+ "loss": 0.7584,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 1.7579496915045087,
3247
+ "grad_norm": 0.3676691949367523,
3248
+ "learning_rate": 1.9408355450646234e-07,
3249
+ "loss": 1.1826,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 1.7617465590887518,
3254
+ "grad_norm": 0.36037302017211914,
3255
+ "learning_rate": 1.8804889895727872e-07,
3256
+ "loss": 1.046,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 1.7655434266729948,
3261
+ "grad_norm": 0.3599529266357422,
3262
+ "learning_rate": 1.821058814633339e-07,
3263
+ "loss": 1.0328,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 1.7693402942572378,
3268
+ "grad_norm": 0.32030507922172546,
3269
+ "learning_rate": 1.762547375860832e-07,
3270
+ "loss": 0.9193,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 1.7731371618414808,
3275
+ "grad_norm": 0.4202202558517456,
3276
+ "learning_rate": 1.7049569924541653e-07,
3277
+ "loss": 1.1895,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 1.7769340294257239,
3282
+ "grad_norm": 0.35407963395118713,
3283
+ "learning_rate": 1.6482899471046726e-07,
3284
+ "loss": 1.0546,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 1.780730897009967,
3289
+ "grad_norm": 0.3341258466243744,
3290
+ "learning_rate": 1.5925484859056372e-07,
3291
+ "loss": 1.0506,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 1.78452776459421,
3296
+ "grad_norm": 0.3770039677619934,
3297
+ "learning_rate": 1.5377348182632536e-07,
3298
+ "loss": 1.1839,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 1.7883246321784527,
3303
+ "grad_norm": 0.3668918311595917,
3304
+ "learning_rate": 1.4838511168090707e-07,
3305
+ "loss": 1.1741,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 1.7921214997626957,
3310
+ "grad_norm": 0.3690701425075531,
3311
+ "learning_rate": 1.4308995173138828e-07,
3312
+ "loss": 1.1862,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 1.7959183673469388,
3317
+ "grad_norm": 0.33050721883773804,
3318
+ "learning_rate": 1.3788821186030338e-07,
3319
+ "loss": 1.0628,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 1.7997152349311818,
3324
+ "grad_norm": 0.35489219427108765,
3325
+ "learning_rate": 1.3278009824732763e-07,
3326
+ "loss": 1.0405,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 1.8035121025154248,
3331
+ "grad_norm": 0.3431392014026642,
3332
+ "learning_rate": 1.2776581336110234e-07,
3333
+ "loss": 1.0425,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 1.8073089700996676,
3338
+ "grad_norm": 0.35951146483421326,
3339
+ "learning_rate": 1.2284555595120901e-07,
3340
+ "loss": 1.192,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 1.8111058376839106,
3345
+ "grad_norm": 0.34095799922943115,
3346
+ "learning_rate": 1.1801952104029347e-07,
3347
+ "loss": 0.9311,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 1.8149027052681537,
3352
+ "grad_norm": 0.36434096097946167,
3353
+ "learning_rate": 1.1328789991633532e-07,
3354
+ "loss": 1.1809,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 1.8186995728523967,
3359
+ "grad_norm": 0.35194143652915955,
3360
+ "learning_rate": 1.0865088012506408e-07,
3361
+ "loss": 1.0538,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 1.8224964404366397,
3366
+ "grad_norm": 0.3786377012729645,
3367
+ "learning_rate": 1.0410864546252841e-07,
3368
+ "loss": 1.1839,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 1.8262933080208827,
3373
+ "grad_norm": 0.3330764174461365,
3374
+ "learning_rate": 9.966137596780945e-08,
3375
+ "loss": 1.0354,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 1.8300901756051258,
3380
+ "grad_norm": 0.33103281259536743,
3381
+ "learning_rate": 9.530924791588319e-08,
3382
+ "loss": 0.956,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 1.8338870431893688,
3387
+ "grad_norm": 0.34974756836891174,
3388
+ "learning_rate": 9.10524338106375e-08,
3389
+ "loss": 1.1761,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 1.8376839107736118,
3394
+ "grad_norm": 0.3340107202529907,
3395
+ "learning_rate": 8.689110237803056e-08,
3396
+ "loss": 1.0462,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 1.8414807783578548,
3401
+ "grad_norm": 0.337950199842453,
3402
+ "learning_rate": 8.282541855940546e-08,
3403
+ "loss": 1.0587,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 1.8452776459420979,
3408
+ "grad_norm": 0.34110939502716064,
3409
+ "learning_rate": 7.885554350495206e-08,
3410
+ "loss": 1.1823,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 1.849074513526341,
3415
+ "grad_norm": 0.3682970702648163,
3416
+ "learning_rate": 7.498163456731878e-08,
3417
+ "loss": 1.1863,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 1.852871381110584,
3422
+ "grad_norm": 0.3614114820957184,
3423
+ "learning_rate": 7.120384529537672e-08,
3424
+ "loss": 1.1923,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 1.8566682486948267,
3429
+ "grad_norm": 1.5183669328689575,
3430
+ "learning_rate": 6.752232542813319e-08,
3431
+ "loss": 0.5159,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 1.8604651162790697,
3436
+ "grad_norm": 1.4683269262313843,
3437
+ "learning_rate": 6.393722088879534e-08,
3438
+ "loss": 0.504,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 1.8642619838633128,
3443
+ "grad_norm": 1.4609661102294922,
3444
+ "learning_rate": 6.044867377898806e-08,
3445
+ "loss": 0.5112,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 1.8680588514475558,
3450
+ "grad_norm": 1.6301960945129395,
3451
+ "learning_rate": 5.7056822373121324e-08,
3452
+ "loss": 0.5463,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 1.8718557190317988,
3457
+ "grad_norm": 1.419601321220398,
3458
+ "learning_rate": 5.3761801112907356e-08,
3459
+ "loss": 0.4816,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 1.8756525866160416,
3464
+ "grad_norm": 1.1993861198425293,
3465
+ "learning_rate": 5.0563740602034284e-08,
3466
+ "loss": 0.418,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 1.8794494542002846,
3471
+ "grad_norm": 1.2279670238494873,
3472
+ "learning_rate": 4.746276760098867e-08,
3473
+ "loss": 0.4118,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 1.8832463217845277,
3478
+ "grad_norm": 0.9904822111129761,
3479
+ "learning_rate": 4.44590050220306e-08,
3480
+ "loss": 0.3383,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 1.8870431893687707,
3485
+ "grad_norm": 1.4921010732650757,
3486
+ "learning_rate": 4.155257192432205e-08,
3487
+ "loss": 0.5024,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 1.8908400569530137,
3492
+ "grad_norm": 1.2175933122634888,
3493
+ "learning_rate": 3.874358350920843e-08,
3494
+ "loss": 0.4521,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 1.8946369245372567,
3499
+ "grad_norm": 0.9808973670005798,
3500
+ "learning_rate": 3.603215111565139e-08,
3501
+ "loss": 0.3847,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 1.8984337921214998,
3506
+ "grad_norm": 1.0177325010299683,
3507
+ "learning_rate": 3.341838221581656e-08,
3508
+ "loss": 0.433,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 1.9022306597057428,
3513
+ "grad_norm": 1.1320708990097046,
3514
+ "learning_rate": 3.090238041081328e-08,
3515
+ "loss": 0.4865,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 1.9060275272899858,
3520
+ "grad_norm": 0.8693588972091675,
3521
+ "learning_rate": 2.848424542658823e-08,
3522
+ "loss": 0.3843,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 1.9098243948742288,
3527
+ "grad_norm": 1.0695801973342896,
3528
+ "learning_rate": 2.6164073109972986e-08,
3529
+ "loss": 0.4924,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 1.9136212624584719,
3534
+ "grad_norm": 1.0257716178894043,
3535
+ "learning_rate": 2.3941955424884312e-08,
3536
+ "loss": 0.4785,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 1.9174181300427149,
3541
+ "grad_norm": 0.8927969932556152,
3542
+ "learning_rate": 2.1817980448679553e-08,
3543
+ "loss": 0.4477,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 1.921214997626958,
3548
+ "grad_norm": 0.960476815700531,
3549
+ "learning_rate": 1.979223236866501e-08,
3550
+ "loss": 0.484,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 1.9250118652112007,
3555
+ "grad_norm": 0.8209058046340942,
3556
+ "learning_rate": 1.7864791478760245e-08,
3557
+ "loss": 0.4217,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 1.9288087327954437,
3562
+ "grad_norm": 0.815679669380188,
3563
+ "learning_rate": 1.603573417631371e-08,
3564
+ "loss": 0.4293,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 1.9326056003796868,
3569
+ "grad_norm": 0.9071650505065918,
3570
+ "learning_rate": 1.4305132959075706e-08,
3571
+ "loss": 0.4821,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 1.9364024679639298,
3576
+ "grad_norm": 0.9293763637542725,
3577
+ "learning_rate": 1.2673056422325413e-08,
3578
+ "loss": 0.4737,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 1.9401993355481728,
3583
+ "grad_norm": 0.8001239895820618,
3584
+ "learning_rate": 1.1139569256150285e-08,
3585
+ "loss": 0.4284,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 1.9439962031324156,
3590
+ "grad_norm": 0.7981712222099304,
3591
+ "learning_rate": 9.704732242883374e-09,
3592
+ "loss": 0.4344,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 1.9477930707166586,
3597
+ "grad_norm": 0.5713729858398438,
3598
+ "learning_rate": 8.368602254693603e-09,
3599
+ "loss": 0.3397,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 1.9515899383009017,
3604
+ "grad_norm": 0.7548425197601318,
3605
+ "learning_rate": 7.131232251331721e-09,
3606
+ "loss": 0.4207,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 1.9553868058851447,
3611
+ "grad_norm": 0.6806543469429016,
3612
+ "learning_rate": 5.992671278030327e-09,
3613
+ "loss": 0.4099,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 1.9591836734693877,
3618
+ "grad_norm": 0.836120069026947,
3619
+ "learning_rate": 4.952964463561805e-09,
3620
+ "loss": 0.4671,
3621
+ "step": 516
3622
+ },
3623
+ {
3624
+ "epoch": 1.9629805410536307,
3625
+ "grad_norm": 0.662464439868927,
3626
+ "learning_rate": 4.012153018446984e-09,
3627
+ "loss": 0.3776,
3628
+ "step": 517
3629
+ },
3630
+ {
3631
+ "epoch": 1.9667774086378738,
3632
+ "grad_norm": 0.7680605053901672,
3633
+ "learning_rate": 3.170274233324222e-09,
3634
+ "loss": 0.4336,
3635
+ "step": 518
3636
+ },
3637
+ {
3638
+ "epoch": 1.9705742762221168,
3639
+ "grad_norm": 0.7456918954849243,
3640
+ "learning_rate": 2.4273614774691923e-09,
3641
+ "loss": 0.4209,
3642
+ "step": 519
3643
+ },
3644
+ {
3645
+ "epoch": 1.9743711438063598,
3646
+ "grad_norm": 0.7245385050773621,
3647
+ "learning_rate": 1.7834441974740047e-09,
3648
+ "loss": 0.4,
3649
+ "step": 520
3650
+ },
3651
+ {
3652
+ "epoch": 1.9781680113906028,
3653
+ "grad_norm": 0.6544315814971924,
3654
+ "learning_rate": 1.2385479160784141e-09,
3655
+ "loss": 0.3741,
3656
+ "step": 521
3657
+ },
3658
+ {
3659
+ "epoch": 1.9819648789748459,
3660
+ "grad_norm": 0.721889317035675,
3661
+ "learning_rate": 7.926942311597962e-10,
3662
+ "loss": 0.4156,
3663
+ "step": 522
3664
+ },
3665
+ {
3666
+ "epoch": 1.9857617465590889,
3667
+ "grad_norm": 0.8772999048233032,
3668
+ "learning_rate": 4.4590081487577706e-10,
3669
+ "loss": 0.4664,
3670
+ "step": 523
3671
+ },
3672
+ {
3673
+ "epoch": 1.989558614143332,
3674
+ "grad_norm": 0.8888481855392456,
3675
+ "learning_rate": 1.9818141296451544e-10,
3676
+ "loss": 0.4626,
3677
+ "step": 524
3678
+ },
3679
+ {
3680
+ "epoch": 1.9933554817275747,
3681
+ "grad_norm": 0.7575893998146057,
3682
+ "learning_rate": 4.954584419930575e-11,
3683
+ "loss": 0.4245,
3684
+ "step": 525
3685
+ },
3686
+ {
3687
+ "epoch": 1.9971523493118177,
3688
+ "grad_norm": 0.878999650478363,
3689
+ "learning_rate": 0.0,
3690
+ "loss": 0.4739,
3691
+ "step": 526
3692
+ }
3693
+ ],
3694
+ "logging_steps": 1.0,
3695
+ "max_steps": 526,
3696
+ "num_input_tokens_seen": 0,
3697
+ "num_train_epochs": 2,
3698
+ "save_steps": 500,
3699
+ "stateful_callbacks": {
3700
+ "TrainerControl": {
3701
+ "args": {
3702
+ "should_epoch_stop": false,
3703
+ "should_evaluate": false,
3704
+ "should_log": false,
3705
+ "should_save": true,
3706
+ "should_training_stop": true
3707
+ },
3708
+ "attributes": {}
3709
+ }
3710
+ },
3711
+ "total_flos": 1.6538932878717747e+18,
3712
+ "train_batch_size": 1,
3713
+ "trial_name": null,
3714
+ "trial_params": null
3715
+ }
checkpoint-526/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66c2f09cdfe4b739ffb9f91aaae33dcd93a75b26b1c8fda5ddbe3a91ce174d5
3
+ size 5816