matt-tries-dl
commited on
Commit
•
7dd7ab4
1
Parent(s):
4f1cd24
save
Browse files- llama_test.ipynb +57 -0
- sqllama-out2/adapter_config.json +18 -0
- sqllama-out2/adapter_model.bin +3 -0
- wikisql.ipynb +497 -0
llama_test.ipynb
CHANGED
@@ -2307,6 +2307,63 @@
|
|
2307 |
"trainer.train(resume_from_checkpoint=False)\n",
|
2308 |
"model.save_pretrained('sqllama-out')"
|
2309 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2310 |
}
|
2311 |
],
|
2312 |
"metadata": {
|
|
|
2307 |
"trainer.train(resume_from_checkpoint=False)\n",
|
2308 |
"model.save_pretrained('sqllama-out')"
|
2309 |
]
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"cell_type": "code",
|
2313 |
+
"execution_count": 7,
|
2314 |
+
"metadata": {},
|
2315 |
+
"outputs": [
|
2316 |
+
{
|
2317 |
+
"name": "stderr",
|
2318 |
+
"output_type": "stream",
|
2319 |
+
"text": [
|
2320 |
+
"/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/transformers/generation/utils.py:1220: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation)\n",
|
2321 |
+
" \"You have modified the pretrained model configuration to control generation. This is a\"\n",
|
2322 |
+
"/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
2323 |
+
" warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n"
|
2324 |
+
]
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"name": "stdout",
|
2328 |
+
"output_type": "stream",
|
2329 |
+
"text": [
|
2330 |
+
"Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.\n",
|
2331 |
+
"### Question: What county has a CERCLIS ID of scd037405362?\n",
|
2332 |
+
"### Input: Table 2-11960788-1 has columns CERCLIS ID (text),Name (text),County (text),Proposed (text),Listed (text). \n",
|
2333 |
+
"### Answer: \n",
|
2334 |
+
"<unk>Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.\n",
|
2335 |
+
"### Question: What county has a CERCLIS ID of scd037405362?\n",
|
2336 |
+
"### Input: Table 2-11960788-1 has columns CERCLIS ID (text),Name (text),County (text),Proposed (text),Listed (text). \n",
|
2337 |
+
"### Answer: SELECT County FROM 2-11960788-1 WHERE CERCLIS ID = 'scd037405362' \n",
|
2338 |
+
"### Question: What county has a CERCLIS ID of scd037405362?\n",
|
2339 |
+
"### Input: Table 2-11960788-1 has columns CERCLIS ID (text),Name (text),County (text),Proposed (text),Listed (text). \n",
|
2340 |
+
"### Answer: SELECT County FROM 2-11960788-1 WHERE CERCLIS ID\n",
|
2341 |
+
"\n",
|
2342 |
+
"### Answer: SELECT County FROM 2-11960788-1 WHERE CERCLIS ID = 'scd037405362'\n"
|
2343 |
+
]
|
2344 |
+
}
|
2345 |
+
],
|
2346 |
+
"source": [
|
2347 |
+
"def get_query(q):\n",
|
2348 |
+
" \n",
|
2349 |
+
" toks = tokenizer(q , return_tensors='pt')\n",
|
2350 |
+
" ctoks = toks.input_ids.to('cuda')\n",
|
2351 |
+
" gen = model.generate(ctoks, max_length=256)\n",
|
2352 |
+
" return tokenizer.decode(gen[0])\n",
|
2353 |
+
"\n",
|
2354 |
+
"M = len(nl_q)\n",
|
2355 |
+
"j = random.randint(0,M-1)\n",
|
2356 |
+
"qs = nl_q[j] + '\\n### Answer: '\n",
|
2357 |
+
"a = sql_a[j]\n",
|
2358 |
+
"\n",
|
2359 |
+
"ma = get_query(qs)\n",
|
2360 |
+
"\n",
|
2361 |
+
"#print(qs)\n",
|
2362 |
+
"print('from model')\n",
|
2363 |
+
"print(ma)\n",
|
2364 |
+
"print('expected answer')\n",
|
2365 |
+
"print(a)\n"
|
2366 |
+
]
|
2367 |
}
|
2368 |
],
|
2369 |
"metadata": {
|
sqllama-out2/adapter_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "decapoda-research/llama-7b-hf",
|
3 |
+
"bias": "none",
|
4 |
+
"enable_lora": null,
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"lora_alpha": 16,
|
8 |
+
"lora_dropout": 0.1,
|
9 |
+
"merge_weights": false,
|
10 |
+
"modules_to_save": null,
|
11 |
+
"peft_type": "LORA",
|
12 |
+
"r": 4,
|
13 |
+
"target_modules": [
|
14 |
+
"q_proj",
|
15 |
+
"v_proj"
|
16 |
+
],
|
17 |
+
"task_type": "CASUAL_LM"
|
18 |
+
}
|
sqllama-out2/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ee15525f45ab11e3e7ba334c0639b7263ea25ae0d42aa22f801022020ffc493
|
3 |
+
size 8434381
|
wikisql.ipynb
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 11,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"data": {
|
10 |
+
"text/plain": [
|
11 |
+
"True"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
"execution_count": 11,
|
15 |
+
"metadata": {},
|
16 |
+
"output_type": "execute_result"
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"import torch\n",
|
21 |
+
"import torch.nn as nn\n",
|
22 |
+
"torch.cuda.is_available()"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [
|
30 |
+
{
|
31 |
+
"name": "stderr",
|
32 |
+
"output_type": "stream",
|
33 |
+
"text": [
|
34 |
+
"/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths...\n",
|
35 |
+
" warn(msg)\n",
|
36 |
+
"The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
|
37 |
+
"The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. \n",
|
38 |
+
"The class this function is called from is 'LlamaTokenizer'.\n"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "stdout",
|
43 |
+
"output_type": "stream",
|
44 |
+
"text": [
|
45 |
+
"\n",
|
46 |
+
"===================================BUG REPORT===================================\n",
|
47 |
+
"Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
48 |
+
"================================================================================\n",
|
49 |
+
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
50 |
+
"CUDA SETUP: Highest compute capability among GPUs detected: 7.5\n",
|
51 |
+
"CUDA SETUP: Detected CUDA version 113\n",
|
52 |
+
"CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so...\n"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"data": {
|
57 |
+
"application/vnd.jupyter.widget-view+json": {
|
58 |
+
"model_id": "a9428ee09f334655b6b261d478cbd3d0",
|
59 |
+
"version_major": 2,
|
60 |
+
"version_minor": 0
|
61 |
+
},
|
62 |
+
"text/plain": [
|
63 |
+
"Loading checkpoint shards: 0%| | 0/33 [00:00<?, ?it/s]"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
"metadata": {},
|
67 |
+
"output_type": "display_data"
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"source": [
|
71 |
+
"from transformers import LlamaTokenizer, LlamaForCausalLM\n",
|
72 |
+
"from peft import prepare_model_for_int8_training\n",
|
73 |
+
"tokenizer = LlamaTokenizer.from_pretrained(\n",
|
74 |
+
" \"decapoda-research/llama-7b-hf\")\n",
|
75 |
+
" \n",
|
76 |
+
"tokenizer.pad_token_id = 0\n",
|
77 |
+
"tokenizer.padding_side = 'left'\n",
|
78 |
+
"\n",
|
79 |
+
"model = LlamaForCausalLM.from_pretrained(\n",
|
80 |
+
" \"decapoda-research/llama-7b-hf\",\n",
|
81 |
+
" load_in_8bit=True,\n",
|
82 |
+
" device_map=\"auto\",\n",
|
83 |
+
" torch_dtype=torch.float16\n",
|
84 |
+
")\n",
|
85 |
+
"\n",
|
86 |
+
"model = prepare_model_for_int8_training(model)"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "code",
|
91 |
+
"execution_count": 3,
|
92 |
+
"metadata": {},
|
93 |
+
"outputs": [
|
94 |
+
{
|
95 |
+
"name": "stdout",
|
96 |
+
"output_type": "stream",
|
97 |
+
"text": [
|
98 |
+
"\n",
|
99 |
+
"table: 2-13081928-2\n",
|
100 |
+
"columns: Country,Chart,Period,Peak position,Sales\n",
|
101 |
+
"Q: Name the period for Chart of g-music j-pop/k-pop chart\n",
|
102 |
+
"A: SELECT Period FROM 2-13081928-2 WHERE Chart = 'g-music j-pop/k-pop chart'\n",
|
103 |
+
"\n",
|
104 |
+
"table: 2-13612447-1\n",
|
105 |
+
"columns: Fraction,Ellipsis,Vinculum,Dots,Parentheses\n",
|
106 |
+
"Q: What is the dot value when the ellipsis is 0.012345679…?\n",
|
107 |
+
"A: SELECT Dots FROM 2-13612447-1 WHERE Ellipsis = '0.012345679…'\n",
|
108 |
+
"\n",
|
109 |
+
"table: 1-168274-1\n",
|
110 |
+
"columns: Company,ICB Sector,Ticker symbol,Index weighting (%) at 17 January 2013,Market cap. at April 2013 (€)\n",
|
111 |
+
"Q: Name the total number of index weighting % at 17 january 2013 for bouygues\n",
|
112 |
+
"A: SELECT COUNT Index weighting (%) at 17 January 2013 FROM 1-168274-1 WHERE Company = 'Bouygues'\n",
|
113 |
+
"\n",
|
114 |
+
"table: 2-15826191-2\n",
|
115 |
+
"columns: Rank,Nation,Gold,Silver,Bronze,Total\n",
|
116 |
+
"Q: What is the lowest gold when there are 0 bronze and the total is less than 2, and silver is less than 0?\n",
|
117 |
+
"A: SELECT MIN Gold FROM 2-15826191-2 WHERE Bronze = 0 AND Total < 2 AND Silver < 0\n",
|
118 |
+
"\n",
|
119 |
+
"table: 2-16387912-1\n",
|
120 |
+
"columns: Home team,Home team score,Away team,Away team score,Ground,Date,Time\n",
|
121 |
+
"Q: What is Ground, when Away Team is Sydney?\n",
|
122 |
+
"A: SELECT Ground FROM 2-16387912-1 WHERE Away team = 'sydney'\n"
|
123 |
+
]
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"source": [
|
127 |
+
"import random\n",
|
128 |
+
"import json\n",
|
129 |
+
"\n",
|
130 |
+
"# defined by WikiSQL\n",
|
131 |
+
"\n",
|
132 |
+
"agg_ops = ['', 'MAX', 'MIN', 'COUNT', 'SUM', 'AVG']\n",
|
133 |
+
"cond_ops = ['=', '>', '<', 'OP']\n",
|
134 |
+
"syms = ['SELECT', 'WHERE', 'AND', 'COL', 'TABLE', 'CAPTION', 'PAGE', 'SECTION', 'OP', 'COND', 'QUESTION', 'AGG', 'AGGOPS', 'CONDOPS']\n",
|
135 |
+
"\n",
|
136 |
+
"def fix_repr(d,cols,types,tid):\n",
|
137 |
+
" sel_index=d['sel'] \n",
|
138 |
+
" agg_index=d['agg']\n",
|
139 |
+
" conditions=d['conds']\n",
|
140 |
+
" col = cols[sel_index]\n",
|
141 |
+
" rep = 'SELECT {agg} {sel} FROM {tid}'.format(\n",
|
142 |
+
" agg=agg_ops[agg_index],\n",
|
143 |
+
" sel=col,\n",
|
144 |
+
" tid=tid\n",
|
145 |
+
" )\n",
|
146 |
+
" if conditions:\n",
|
147 |
+
" cs = []\n",
|
148 |
+
" for i, o, v in conditions:\n",
|
149 |
+
" #print(i,cols)\n",
|
150 |
+
" nm = cols[i]\n",
|
151 |
+
" op = cond_ops[o]\n",
|
152 |
+
" \n",
|
153 |
+
" if types[i] in ['text']:\n",
|
154 |
+
" val = f\"\\'{v}\\'\"\n",
|
155 |
+
" else:\n",
|
156 |
+
" val = v\n",
|
157 |
+
" cs.append(f'{nm} {op} {val}')\n",
|
158 |
+
" #print(cs)\n",
|
159 |
+
"\n",
|
160 |
+
" rep += ' WHERE ' + ' AND '.join(cs)\n",
|
161 |
+
" \n",
|
162 |
+
" return rep\n",
|
163 |
+
"\n",
|
164 |
+
"tbl_cols = {}\n",
|
165 |
+
"tbl_types = {}\n",
|
166 |
+
"tbl_str = {}\n",
|
167 |
+
"\n",
|
168 |
+
"prefix = 'Below is a question that describes a data request, paired with an input that describes a SQL table. Write a SQL query that retrieves the data.'\n",
|
169 |
+
"\n",
|
170 |
+
"def tbl_def_to_string(id, header, types):\n",
|
171 |
+
" s = f'table: {id}\\ncolumns: ' + ','.join(header)\n",
|
172 |
+
" return s\n",
|
173 |
+
"\n",
|
174 |
+
"with open('data/train.tables.jsonl') as f:\n",
|
175 |
+
" for line in f:\n",
|
176 |
+
" js = json.loads(line)\n",
|
177 |
+
" id = js['id']\n",
|
178 |
+
" hdr = js['header']\n",
|
179 |
+
" ts = js['types']\n",
|
180 |
+
" tbl_str[id] = tbl_def_to_string(id,hdr,ts)\n",
|
181 |
+
" tbl_cols[id] = hdr\n",
|
182 |
+
" tbl_types[id] = ts\n",
|
183 |
+
"\n",
|
184 |
+
"q_s = []\n",
|
185 |
+
"a_s = []\n",
|
186 |
+
"\n",
|
187 |
+
"with open('data/train.jsonl') as f:\n",
|
188 |
+
" for line in f:\n",
|
189 |
+
" js = json.loads(line)\n",
|
190 |
+
" id = js['table_id']\n",
|
191 |
+
" s = tbl_str[id]\n",
|
192 |
+
" qst = js['question']\n",
|
193 |
+
" nl = s + '\\nQ: ' + qst + '\\nA: '\n",
|
194 |
+
" q_s.append(nl)\n",
|
195 |
+
"\n",
|
196 |
+
" sql = js['sql']\n",
|
197 |
+
" a = fix_repr(sql,tbl_cols[id],tbl_types[id],id)\n",
|
198 |
+
" a = a + \"\\nEND\\n\"\n",
|
199 |
+
" a_s.append(a)\n",
|
200 |
+
"\n",
|
201 |
+
"M = len(q_s)\n",
|
202 |
+
"\n",
|
203 |
+
"data_txt = [q_s[i] + a_s[i] for i in range(M)]\n",
|
204 |
+
"\n",
|
205 |
+
"for i in range(5):\n",
|
206 |
+
" j = random.randint(0,M-1)\n",
|
207 |
+
" print()\n",
|
208 |
+
" print(data_txt[j]) \n",
|
209 |
+
" \n",
|
210 |
+
" "
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": 4,
|
216 |
+
"metadata": {},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"toks = [tokenizer(s) for s in data_txt]\n"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 5,
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [
|
227 |
+
{
|
228 |
+
"name": "stdout",
|
229 |
+
"output_type": "stream",
|
230 |
+
"text": [
|
231 |
+
"89\n",
|
232 |
+
" 0\n",
|
233 |
+
"count 56355.000000\n",
|
234 |
+
"mean 98.219519\n",
|
235 |
+
"std 21.740325\n",
|
236 |
+
"min 60.000000\n",
|
237 |
+
"25% 84.500000\n",
|
238 |
+
"50% 94.000000\n",
|
239 |
+
"75% 106.000000\n",
|
240 |
+
"max 458.000000\n",
|
241 |
+
"35608\n"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
],
|
245 |
+
"source": [
|
246 |
+
"import numpy as np\n",
|
247 |
+
"import pandas as pd\n",
|
248 |
+
"\n",
|
249 |
+
"print(len(toks[0].input_ids))\n",
|
250 |
+
"lens = np.array([len(tok.input_ids) for tok in toks])\n",
|
251 |
+
"print(pd.DataFrame(lens).describe())\n",
|
252 |
+
"\n",
|
253 |
+
"z = zip(q_s,lens)\n",
|
254 |
+
"q_red = [a for a,b in z if b < 100]\n",
|
255 |
+
"z = zip(a_s,lens)\n",
|
256 |
+
"a_red = [a for a,b in z if b < 100]\n",
|
257 |
+
"\n",
|
258 |
+
"data_red = [q_red[i] + a_red[i] for i in range(len(q_red))]\n",
|
259 |
+
"print(len(data_red))\n",
|
260 |
+
"\n"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 7,
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [
|
268 |
+
{
|
269 |
+
"data": {
|
270 |
+
"application/vnd.jupyter.widget-view+json": {
|
271 |
+
"model_id": "d548eb2af20f435fa1af81e9045a2d0e",
|
272 |
+
"version_major": 2,
|
273 |
+
"version_minor": 0
|
274 |
+
},
|
275 |
+
"text/plain": [
|
276 |
+
"Map: 0%| | 0/1000 [00:00<?, ? examples/s]"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
"metadata": {},
|
280 |
+
"output_type": "display_data"
|
281 |
+
}
|
282 |
+
],
|
283 |
+
"source": [
|
284 |
+
"import random, datasets\n",
|
285 |
+
"d = {'prompt': random.sample(data_red, 1000)}\n",
|
286 |
+
"\n",
|
287 |
+
"tokenizer.pad_token_id = tokenizer.eos_token\n",
|
288 |
+
"\n",
|
289 |
+
"data = datasets.Dataset.from_dict(d)\n",
|
290 |
+
"data = data.map(lambda x:\n",
|
291 |
+
" tokenizer(\n",
|
292 |
+
" x['prompt'],\n",
|
293 |
+
" truncation=True,\n",
|
294 |
+
" max_length=100,\n",
|
295 |
+
" padding=\"max_length\"\n",
|
296 |
+
" ))\n",
|
297 |
+
"\n",
|
298 |
+
"data = data.remove_columns('prompt')\n"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 8,
|
304 |
+
"metadata": {},
|
305 |
+
"outputs": [],
|
306 |
+
"source": [
|
307 |
+
"from peft import LoraConfig, get_peft_model\n",
|
308 |
+
"import transformers\n",
|
309 |
+
"import datasets\n",
|
310 |
+
"\n",
|
311 |
+
"LORA_R = 4\n",
|
312 |
+
"LORA_ALPHA = 16\n",
|
313 |
+
"LORA_DROPOUT = .1\n",
|
314 |
+
"CUTOFF_LEN = 256\n",
|
315 |
+
"BATCH = 128\n",
|
316 |
+
"MICRO_BATCH = 4\n",
|
317 |
+
"N_GAS = BATCH//MICRO_BATCH\n",
|
318 |
+
"EPOCHS = 1\n",
|
319 |
+
"LR = 1e-4\n",
|
320 |
+
"\n",
|
321 |
+
"lora_cfg = LoraConfig(\n",
|
322 |
+
" r = LORA_R,\n",
|
323 |
+
" lora_alpha=LORA_ALPHA,\n",
|
324 |
+
" lora_dropout=LORA_DROPOUT,\n",
|
325 |
+
" task_type='CASUAL_LM',\n",
|
326 |
+
" target_modules=['q_proj','v_proj']\n",
|
327 |
+
")\n",
|
328 |
+
"\n",
|
329 |
+
"model = get_peft_model(model,lora_cfg)\n",
|
330 |
+
"\n",
|
331 |
+
"targs = transformers.TrainingArguments(\n",
|
332 |
+
" per_device_train_batch_size=MICRO_BATCH,\n",
|
333 |
+
" gradient_accumulation_steps=N_GAS,\n",
|
334 |
+
" warmup_steps=0,\n",
|
335 |
+
" num_train_epochs=EPOCHS,\n",
|
336 |
+
" learning_rate=LR,\n",
|
337 |
+
" fp16=True,\n",
|
338 |
+
" logging_steps=1,\n",
|
339 |
+
" output_dir='sqllama-out2',\n",
|
340 |
+
" save_total_limit=3,\n",
|
341 |
+
" remove_unused_columns=False\n",
|
342 |
+
")\n"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": 9,
|
348 |
+
"metadata": {},
|
349 |
+
"outputs": [
|
350 |
+
{
|
351 |
+
"data": {
|
352 |
+
"text/html": [
|
353 |
+
"\n",
|
354 |
+
" <div>\n",
|
355 |
+
" \n",
|
356 |
+
" <progress value='7' max='7' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
357 |
+
" [7/7 05:33, Epoch 0/1]\n",
|
358 |
+
" </div>\n",
|
359 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
360 |
+
" <thead>\n",
|
361 |
+
" <tr style=\"text-align: left;\">\n",
|
362 |
+
" <th>Step</th>\n",
|
363 |
+
" <th>Training Loss</th>\n",
|
364 |
+
" </tr>\n",
|
365 |
+
" </thead>\n",
|
366 |
+
" <tbody>\n",
|
367 |
+
" <tr>\n",
|
368 |
+
" <td>1</td>\n",
|
369 |
+
" <td>2.710700</td>\n",
|
370 |
+
" </tr>\n",
|
371 |
+
" <tr>\n",
|
372 |
+
" <td>2</td>\n",
|
373 |
+
" <td>2.680400</td>\n",
|
374 |
+
" </tr>\n",
|
375 |
+
" <tr>\n",
|
376 |
+
" <td>3</td>\n",
|
377 |
+
" <td>2.684500</td>\n",
|
378 |
+
" </tr>\n",
|
379 |
+
" <tr>\n",
|
380 |
+
" <td>4</td>\n",
|
381 |
+
" <td>2.625600</td>\n",
|
382 |
+
" </tr>\n",
|
383 |
+
" <tr>\n",
|
384 |
+
" <td>5</td>\n",
|
385 |
+
" <td>2.609600</td>\n",
|
386 |
+
" </tr>\n",
|
387 |
+
" <tr>\n",
|
388 |
+
" <td>6</td>\n",
|
389 |
+
" <td>2.619100</td>\n",
|
390 |
+
" </tr>\n",
|
391 |
+
" <tr>\n",
|
392 |
+
" <td>7</td>\n",
|
393 |
+
" <td>2.603800</td>\n",
|
394 |
+
" </tr>\n",
|
395 |
+
" </tbody>\n",
|
396 |
+
"</table><p>"
|
397 |
+
],
|
398 |
+
"text/plain": [
|
399 |
+
"<IPython.core.display.HTML object>"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
"metadata": {},
|
403 |
+
"output_type": "display_data"
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"source": [
|
407 |
+
"trainer = transformers.Trainer(\n",
|
408 |
+
" model = model,\n",
|
409 |
+
" train_dataset = data,\n",
|
410 |
+
" args = targs,\n",
|
411 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
412 |
+
")\n",
|
413 |
+
"trainer.train(resume_from_checkpoint=False)\n",
|
414 |
+
"model.save_pretrained('sqllama-out2')"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": 10,
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"name": "stderr",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/transformers/generation/utils.py:1220: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation)\n",
|
427 |
+
" \"You have modified the pretrained model configuration to control generation. This is a\"\n",
|
428 |
+
"/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None\n",
|
429 |
+
" warnings.warn(\"None of the inputs have requires_grad=True. Gradients will be None\")\n"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"name": "stdout",
|
434 |
+
"output_type": "stream",
|
435 |
+
"text": [
|
436 |
+
"from model\n",
|
437 |
+
" ⁇ table: 1-25800134-1\n",
|
438 |
+
"columns: Series #,Season #,Title,Director,Writer(s),Airdate\n",
|
439 |
+
"Q: Who wrote the episode with series number 56?\n",
|
440 |
+
"A: 56-101, \"The Cage\", Gene Roddenberry\n",
|
441 |
+
"Q: Who wrote the episode with series number 56? (2)\n",
|
442 |
+
"A: 56-101,\n",
|
443 |
+
"expected answer SELECT Writer(s) FROM 1-25800134-1 WHERE Series # = 56\n"
|
444 |
+
]
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"source": [
|
448 |
+
"def get_query(q):\n",
|
449 |
+
" \n",
|
450 |
+
" toks = tokenizer(q , return_tensors='pt')\n",
|
451 |
+
" ctoks = toks.input_ids.to('cuda')\n",
|
452 |
+
" gen = model.generate(ctoks, max_length=100)\n",
|
453 |
+
" return tokenizer.decode(gen[0])\n",
|
454 |
+
"\n",
|
455 |
+
"M = len(q_red)\n",
|
456 |
+
"j = random.randint(0,M-1)\n",
|
457 |
+
"qs = q_red[j]\n",
|
458 |
+
"a = a_red[j]\n",
|
459 |
+
"\n",
|
460 |
+
"ma = get_query(qs)\n",
|
461 |
+
"\n",
|
462 |
+
"#print(qs)\n",
|
463 |
+
"print('from model')\n",
|
464 |
+
"print(ma)\n",
|
465 |
+
"print\n",
|
466 |
+
"print('expected answer',a)\n"
|
467 |
+
]
|
468 |
+
}
|
469 |
+
],
|
470 |
+
"metadata": {
|
471 |
+
"kernelspec": {
|
472 |
+
"display_name": ".venv",
|
473 |
+
"language": "python",
|
474 |
+
"name": "python3"
|
475 |
+
},
|
476 |
+
"language_info": {
|
477 |
+
"codemirror_mode": {
|
478 |
+
"name": "ipython",
|
479 |
+
"version": 3
|
480 |
+
},
|
481 |
+
"file_extension": ".py",
|
482 |
+
"mimetype": "text/x-python",
|
483 |
+
"name": "python",
|
484 |
+
"nbconvert_exporter": "python",
|
485 |
+
"pygments_lexer": "ipython3",
|
486 |
+
"version": "3.7.3"
|
487 |
+
},
|
488 |
+
"orig_nbformat": 4,
|
489 |
+
"vscode": {
|
490 |
+
"interpreter": {
|
491 |
+
"hash": "6a381460736e8a0eabfb35eafae436ba15c06439de44e28b965ea473bd8dda90"
|
492 |
+
}
|
493 |
+
}
|
494 |
+
},
|
495 |
+
"nbformat": 4,
|
496 |
+
"nbformat_minor": 2
|
497 |
+
}
|