|
Output exceeds the size limit. Open the full output data in a text editor |
|
|
|
table: 2-1137692-1 |
|
columns: Entrant,Constructor,Chassis,Engine †,Tyre,Driver,Rounds |
|
Q: What were the rounds on the Engine † of the Ferrari 048? |
|
A: SELECT Rounds FROM 2-1137692-1 WHERE Engine † = 'ferrari 048' |
|
END |
|
|
|
|
|
table: 1-21530474-1 |
|
columns: Chassis code,Model no.,Production years,Drivetrain,Transmission,Engine type,Engine code,Region(s) |
|
Q: Name the drivetrain for 1ur-fse for usf41 |
|
A: SELECT Drivetrain FROM 1-21530474-1 WHERE Engine code = '1UR-FSE' AND Chassis code = 'USF41' |
|
END |
|
|
|
|
|
table: 2-14155087-1 |
|
columns: Callsign,Area served,Frequency,Band,On-air ID,Purpose |
|
Q: What is the Callsign with an Area of tamworth and frequency of 0 88.9? |
|
A: SELECT Callsign FROM 2-14155087-1 WHERE Area served = 'tamworth' AND Frequency = '0 88.9' |
|
END |
|
|
|
|
|
table: 2-17580726-2 |
|
columns: Date,Opponent,Venue,Score,Attendance,Scorers |
|
Q: What is the number of people in attendance when Tonbridge Angels is the opponent? |
|
... |
|
Q: What were the match points when Bordeaux-Bègles was eliminated from competition? |
|
A: SELECT Match points FROM 1-27986200-3 WHERE Eliminated from competition = 'Bordeaux-Bègles' |
|
END |
|
|
|
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths... |
|
warn(msg) |
|
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. |
|
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. |
|
The class this function is called from is 'LlamaTokenizer'. |
|
|
|
===================================BUG REPORT=================================== |
|
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues |
|
================================================================================ |
|
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so |
|
CUDA SETUP: Highest compute capability among GPUs detected: 7.5 |
|
CUDA SETUP: Detected CUDA version 113 |
|
CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... |
|
True |
|
92 |
|
0 |
|
count 56355.000000 |
|
mean 101.219519 |
|
std 21.740325 |
|
min 63.000000 |
|
25% 87.500000 |
|
50% 97.000000 |
|
75% 109.000000 |
|
max 461.000000 |
|
32084 |
|
[250/250 3:49:26, Epoch 0/1] |
|
Step Training Loss |
|
1 2.748800 |
|
2 2.699100 |
|
3 2.670200 |
|
4 2.600500 |
|
5 2.560100 |
|
6 2.556800 |
|
7 2.498100 |
|
8 2.515400 |
|
9 2.436100 |
|
10 2.411700 |
|
11 2.346400 |
|
12 2.276300 |
|
13 2.238000 |
|
14 2.189100 |
|
15 2.109200 |
|
16 2.058000 |
|
17 1.983900 |
|
18 1.928600 |
|
19 1.824100 |
|
20 1.794700 |
|
21 1.681200 |
|
22 1.598900 |
|
23 1.562000 |
|
24 1.527200 |
|
25 1.518700 |
|
26 1.493100 |
|
27 1.500500 |
|
28 1.464000 |
|
29 1.386900 |
|
30 1.373400 |
|
31 1.362200 |
|
32 1.360800 |
|
33 1.321000 |
|
34 1.310500 |
|
35 1.302600 |
|
36 1.256100 |
|
37 1.252500 |
|
38 1.202300 |
|
39 1.249100 |
|
40 1.188600 |
|
41 1.203200 |
|
42 1.150000 |
|
43 1.182000 |
|
44 1.192300 |
|
45 1.133100 |
|
46 1.119600 |
|
47 1.097000 |
|
48 1.142100 |
|
49 1.117200 |
|
50 1.129200 |
|
51 1.087300 |
|
52 1.098700 |
|
53 1.135400 |
|
54 1.071700 |
|
55 1.087300 |
|
56 1.051400 |
|
57 1.068300 |
|
58 1.092500 |
|
59 1.068600 |
|
60 1.072800 |
|
61 1.074000 |
|
62 1.060400 |
|
63 1.065800 |
|
64 1.075900 |
|
65 1.059500 |
|
66 1.039600 |
|
67 1.051400 |
|
68 1.049500 |
|
69 1.023800 |
|
70 1.071900 |
|
71 1.051000 |
|
72 1.034700 |
|
73 1.041600 |
|
74 1.030900 |
|
75 1.010800 |
|
76 1.019800 |
|
77 1.005000 |
|
78 1.043800 |
|
79 1.009200 |
|
80 1.017100 |
|
81 1.044600 |
|
82 1.022600 |
|
83 1.011400 |
|
84 0.996600 |
|
85 1.029900 |
|
86 0.988200 |
|
87 1.005600 |
|
88 0.986600 |
|
89 1.025300 |
|
90 1.012500 |
|
91 0.988100 |
|
92 1.001800 |
|
93 0.987100 |
|
94 1.017600 |
|
95 0.998500 |
|
96 0.966600 |
|
97 0.983700 |
|
98 0.961800 |
|
99 0.969000 |
|
100 0.989200 |
|
101 0.956400 |
|
102 0.976000 |
|
103 1.000100 |
|
104 1.001500 |
|
105 0.995900 |
|
106 0.989700 |
|
107 0.965700 |
|
108 0.968400 |
|
109 1.019600 |
|
110 1.000100 |
|
111 0.978500 |
|
112 0.978900 |
|
113 0.952600 |
|
114 0.975400 |
|
115 0.989400 |
|
116 0.968500 |
|
117 0.960100 |
|
118 0.979100 |
|
119 0.955100 |
|
120 0.934800 |
|
121 0.943600 |
|
122 0.976700 |
|
123 0.998700 |
|
124 0.930500 |
|
125 0.953500 |
|
126 0.978000 |
|
127 0.967300 |
|
128 0.929400 |
|
129 0.963100 |
|
130 0.961500 |
|
131 0.978500 |
|
132 0.937200 |
|
133 0.953400 |
|
134 0.962000 |
|
135 0.950700 |
|
136 0.925100 |
|
137 0.958800 |
|
138 0.926200 |
|
139 0.930600 |
|
140 0.968900 |
|
141 0.970400 |
|
142 0.927100 |
|
143 0.911800 |
|
144 0.953200 |
|
145 0.907100 |
|
146 0.935900 |
|
147 0.970600 |
|
148 0.920400 |
|
149 0.930200 |
|
150 0.926700 |
|
151 0.913400 |
|
152 0.926800 |
|
153 0.967200 |
|
154 0.939500 |
|
155 0.910600 |
|
156 0.926400 |
|
157 0.935400 |
|
158 0.967700 |
|
159 0.899000 |
|
160 0.916600 |
|
161 0.961600 |
|
162 0.898200 |
|
163 0.944600 |
|
164 0.935700 |
|
165 0.922500 |
|
166 0.897600 |
|
167 0.968600 |
|
168 0.927400 |
|
169 0.910900 |
|
170 0.904700 |
|
171 0.899800 |
|
172 0.896400 |
|
173 0.862100 |
|
174 0.909100 |
|
175 0.903200 |
|
176 0.958600 |
|
177 0.902500 |
|
178 0.894900 |
|
179 0.937900 |
|
180 0.900700 |
|
181 0.922300 |
|
182 0.939300 |
|
183 0.932600 |
|
184 0.913300 |
|
185 0.941700 |
|
186 0.886300 |
|
187 0.918000 |
|
188 0.884000 |
|
189 0.947400 |
|
190 0.894500 |
|
191 0.929300 |
|
192 0.877300 |
|
193 0.894300 |
|
194 0.867800 |
|
195 0.913500 |
|
196 0.908100 |
|
197 0.931200 |
|
198 0.911000 |
|
199 0.941800 |
|
200 0.913000 |
|
201 0.921800 |
|
202 0.921700 |
|
203 0.914500 |
|
204 0.910500 |
|
205 0.906600 |
|
206 0.915100 |
|
207 0.881600 |
|
208 0.884700 |
|
209 0.902900 |
|
210 0.882600 |
|
211 0.891000 |
|
212 0.914400 |
|
213 0.930400 |
|
214 0.891100 |
|
215 0.859300 |
|
216 0.891800 |
|
217 0.873000 |
|
218 0.925900 |
|
219 0.905700 |
|
220 0.921200 |
|
221 0.890200 |
|
222 0.915800 |
|
223 0.887300 |
|
224 0.898300 |
|
225 0.865600 |
|
226 0.873900 |
|
227 0.904800 |
|
228 0.917900 |
|
229 0.923400 |
|
230 0.939700 |
|
231 0.913400 |
|
232 0.873100 |
|
233 0.896700 |
|
234 0.892100 |
|
235 0.902100 |
|
236 0.927200 |
|
237 0.912900 |
|
238 0.872900 |
|
239 0.904700 |
|
240 0.879600 |
|
241 0.879800 |
|
242 0.908800 |
|
243 0.909800 |
|
244 0.838400 |
|
245 0.889200 |
|
246 0.912900 |
|
247 0.879700 |
|
248 0.910700 |
|
249 0.845400 |
|
250 0.882200 |
|
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None |
|
warnings.warn("None of the inputs have requires_grad=True. Gradients will be None") |
|
Output exceeds the size limit. Open the full output data in a text editor |
|
from model |
|
<unk>table: 1-12028543-3 |
|
columns: Season,Cup FinalDate,WinningTeam,Score,LosingTeam,Location,Cup Final Attendance |
|
Q: Who was the winning team in the 1989 season? |
|
A: SELECT WinningTeam FROM 1-12028543-3 WHERE Season = '1989' |
|
END |
|
END |
|
END |
|
END |
|
|
|
expected answer |
|
SELECT WinningTeam FROM 1-12028543-3 WHERE Season = '1989' |
|
END |
|
|
|
from model |
|
<unk>table: 2-18096431-5 |
|
columns: Place,Player,Country,Score,To par |
|
Q: What is To par, when Country is "United States", and when Player is "Mark Brooks"? |
|
A: 18-1 |
|
END |
|
|
|
|
|
expected answer |
|
SELECT To par FROM 2-18096431-5 WHERE Country = 'united states' AND Player = 'mark brooks' |
|
END |
|
... |
|
expected answer |
|
SELECT Score FROM 2-17978030-6 WHERE Set 3 = '26–28' |
|
END |
|
|