|
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda did not contain libcudart.so as expected! Searching further paths... |
|
warn(msg) |
|
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. |
|
The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. |
|
The class this function is called from is 'LlamaTokenizer'. |
|
|
|
===================================BUG REPORT=================================== |
|
Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues |
|
================================================================================ |
|
CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so |
|
CUDA SETUP: Highest compute capability among GPUs detected: 7.5 |
|
CUDA SETUP: Detected CUDA version 113 |
|
CUDA SETUP: Loading binary /home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... |
|
Output exceeds the size limit. Open the full output data in a text editor |
|
|
|
table: 2-16050349-13 |
|
columns: Rank,Name,Team,Games,Points |
|
Q: What is Games, when Points is less than 340, and when Rank is greater than 3? |
|
A: SELECT Games FROM 2-16050349-13 WHERE Points < 340 AND Rank > 3 |
|
END |
|
|
|
|
|
table: 1-28962227-1 |
|
columns: Series,Premiere,Finale,Runners-up,Winner |
|
Q: What is the date of the finale where Holly Bell was runner-up? |
|
A: SELECT Finale FROM 1-28962227-1 WHERE Runners-up = 'Holly Bell' |
|
END |
|
|
|
|
|
table: 2-10652530-2 |
|
columns: Week,Date,Opponent,Result,Stadium,Record,Attendance |
|
Q: What was the Browns record after they played the game at the Paul Brown stadium? |
|
A: SELECT Record FROM 2-10652530-2 WHERE Stadium = 'paul brown stadium' |
|
END |
|
|
|
|
|
table: 2-18379129-4 |
|
columns: play,author,company,base,country |
|
Q: Who is the author of the Play Electra? |
|
... |
|
Q: What is 02-03, when School Year is % Learning In Latvian? |
|
A: SELECT 02-03 FROM 2-16158579-1 WHERE School year = '% learning in latvian' |
|
END |
|
|
|
True |
|
92 |
|
0 |
|
count 56355.000000 |
|
mean 101.219519 |
|
std 21.740325 |
|
min 63.000000 |
|
25% 87.500000 |
|
50% 97.000000 |
|
75% 109.000000 |
|
max 461.000000 |
|
32084 |
|
[500/500 7:38:36, Epoch 1/2] |
|
Step Training Loss |
|
1 2.748800 |
|
2 2.723800 |
|
3 2.737600 |
|
4 2.707100 |
|
5 2.692800 |
|
6 2.720700 |
|
7 2.681400 |
|
8 2.736400 |
|
9 2.701800 |
|
10 2.711700 |
|
11 2.685800 |
|
12 2.684300 |
|
13 2.686300 |
|
14 2.698800 |
|
15 2.659300 |
|
16 2.688900 |
|
17 2.661800 |
|
18 2.677700 |
|
19 2.647100 |
|
20 2.679800 |
|
21 2.652000 |
|
22 2.628900 |
|
23 2.656100 |
|
24 2.669100 |
|
25 2.667800 |
|
26 2.636300 |
|
27 2.616800 |
|
28 2.630600 |
|
29 2.621000 |
|
30 2.602000 |
|
31 2.607900 |
|
32 2.635800 |
|
33 2.594600 |
|
34 2.604400 |
|
35 2.618900 |
|
36 2.563400 |
|
37 2.589200 |
|
38 2.552100 |
|
39 2.583600 |
|
40 2.554500 |
|
41 2.557400 |
|
42 2.536700 |
|
43 2.535000 |
|
44 2.557900 |
|
45 2.530100 |
|
46 2.527900 |
|
47 2.510100 |
|
48 2.539100 |
|
49 2.500100 |
|
50 2.536200 |
|
51 2.487100 |
|
52 2.521700 |
|
53 2.532600 |
|
54 2.494500 |
|
55 2.468900 |
|
56 2.468700 |
|
57 2.474300 |
|
58 2.480900 |
|
59 2.442800 |
|
60 2.472800 |
|
61 2.452900 |
|
62 2.452000 |
|
63 2.443100 |
|
64 2.446700 |
|
65 2.415100 |
|
66 2.376300 |
|
67 2.411500 |
|
68 2.403900 |
|
69 2.383800 |
|
70 2.427800 |
|
71 2.419400 |
|
72 2.371900 |
|
73 2.364400 |
|
74 2.360000 |
|
75 2.337600 |
|
76 2.332800 |
|
77 2.315700 |
|
78 2.344200 |
|
79 2.331700 |
|
80 2.303100 |
|
81 2.324700 |
|
82 2.285900 |
|
83 2.268000 |
|
84 2.260600 |
|
85 2.286100 |
|
86 2.233600 |
|
87 2.266200 |
|
88 2.217000 |
|
89 2.249300 |
|
90 2.239000 |
|
91 2.221900 |
|
92 2.223300 |
|
93 2.179500 |
|
94 2.204400 |
|
95 2.193200 |
|
96 2.163800 |
|
97 2.158200 |
|
98 2.127700 |
|
99 2.141400 |
|
100 2.121400 |
|
101 2.115500 |
|
102 2.125200 |
|
103 2.140100 |
|
104 2.118400 |
|
105 2.110400 |
|
106 2.097300 |
|
107 2.071400 |
|
108 2.083400 |
|
109 2.090200 |
|
110 2.078200 |
|
111 2.061100 |
|
112 2.047500 |
|
113 2.006100 |
|
114 2.023800 |
|
115 2.014000 |
|
116 2.008800 |
|
117 1.988800 |
|
118 1.984900 |
|
119 1.971000 |
|
120 1.924100 |
|
121 1.953100 |
|
122 1.957800 |
|
123 1.952500 |
|
124 1.890400 |
|
125 1.915900 |
|
126 1.901100 |
|
127 1.879900 |
|
128 1.834100 |
|
129 1.855900 |
|
130 1.853800 |
|
131 1.869200 |
|
132 1.821400 |
|
133 1.835100 |
|
134 1.817700 |
|
135 1.785800 |
|
136 1.764000 |
|
137 1.796800 |
|
138 1.751100 |
|
139 1.756500 |
|
140 1.789900 |
|
141 1.773100 |
|
142 1.729200 |
|
143 1.700200 |
|
144 1.721200 |
|
145 1.690600 |
|
146 1.687700 |
|
147 1.743500 |
|
148 1.690000 |
|
149 1.687200 |
|
150 1.663000 |
|
151 1.648600 |
|
152 1.667100 |
|
153 1.665600 |
|
154 1.647000 |
|
155 1.629500 |
|
156 1.620800 |
|
157 1.616400 |
|
158 1.658500 |
|
159 1.593900 |
|
160 1.604300 |
|
161 1.621200 |
|
162 1.607900 |
|
163 1.591100 |
|
164 1.598100 |
|
165 1.579700 |
|
166 1.545500 |
|
167 1.582100 |
|
168 1.568300 |
|
169 1.557900 |
|
170 1.561300 |
|
171 1.521800 |
|
172 1.542500 |
|
173 1.502300 |
|
174 1.513900 |
|
175 1.501500 |
|
176 1.551200 |
|
177 1.495600 |
|
178 1.504000 |
|
179 1.512500 |
|
180 1.488200 |
|
181 1.492200 |
|
182 1.494300 |
|
183 1.494800 |
|
184 1.446100 |
|
185 1.514700 |
|
186 1.450900 |
|
187 1.476900 |
|
188 1.447100 |
|
189 1.490800 |
|
190 1.433200 |
|
191 1.438100 |
|
192 1.410500 |
|
193 1.422600 |
|
194 1.405500 |
|
195 1.439400 |
|
196 1.448100 |
|
197 1.410200 |
|
198 1.403800 |
|
199 1.464400 |
|
200 1.417700 |
|
201 1.419500 |
|
202 1.419400 |
|
203 1.387700 |
|
204 1.400400 |
|
205 1.404700 |
|
206 1.398400 |
|
207 1.358000 |
|
208 1.359600 |
|
209 1.367700 |
|
210 1.358600 |
|
211 1.369200 |
|
212 1.373700 |
|
213 1.395100 |
|
214 1.360800 |
|
215 1.343900 |
|
216 1.330300 |
|
217 1.328800 |
|
218 1.369900 |
|
219 1.346300 |
|
220 1.379700 |
|
221 1.326000 |
|
222 1.334600 |
|
223 1.339100 |
|
224 1.349200 |
|
225 1.324800 |
|
226 1.303600 |
|
227 1.299900 |
|
228 1.338800 |
|
229 1.331800 |
|
230 1.351400 |
|
231 1.314200 |
|
232 1.293600 |
|
233 1.322100 |
|
234 1.295800 |
|
235 1.302500 |
|
236 1.338900 |
|
237 1.308900 |
|
238 1.290100 |
|
239 1.323300 |
|
240 1.270500 |
|
241 1.246300 |
|
242 1.303900 |
|
243 1.324800 |
|
244 1.216000 |
|
245 1.303500 |
|
246 1.304900 |
|
247 1.273300 |
|
248 1.278300 |
|
249 1.252000 |
|
250 1.283400 |
|
251 1.271600 |
|
252 1.300300 |
|
253 1.265800 |
|
254 1.249200 |
|
255 1.252600 |
|
256 1.265500 |
|
257 1.228600 |
|
258 1.257300 |
|
259 1.288900 |
|
260 1.257200 |
|
261 1.243700 |
|
262 1.272100 |
|
263 1.252000 |
|
264 1.264900 |
|
265 1.268800 |
|
266 1.256000 |
|
267 1.230200 |
|
268 1.231700 |
|
269 1.243400 |
|
270 1.285200 |
|
271 1.225500 |
|
272 1.217900 |
|
273 1.209200 |
|
274 1.224200 |
|
275 1.226400 |
|
276 1.261500 |
|
277 1.223900 |
|
278 1.244000 |
|
279 1.226600 |
|
280 1.235000 |
|
281 1.213400 |
|
282 1.177600 |
|
283 1.218100 |
|
284 1.231900 |
|
285 1.200900 |
|
286 1.223400 |
|
287 1.235100 |
|
288 1.232500 |
|
289 1.230100 |
|
290 1.225900 |
|
291 1.182700 |
|
292 1.237100 |
|
293 1.201000 |
|
294 1.213000 |
|
295 1.205500 |
|
296 1.181900 |
|
297 1.198300 |
|
298 1.195200 |
|
299 1.215000 |
|
300 1.195500 |
|
301 1.186100 |
|
302 1.174900 |
|
303 1.184400 |
|
304 1.207100 |
|
305 1.181100 |
|
306 1.195300 |
|
307 1.189000 |
|
308 1.180200 |
|
309 1.167200 |
|
310 1.206700 |
|
311 1.203600 |
|
312 1.186600 |
|
313 1.224100 |
|
314 1.180000 |
|
315 1.186600 |
|
316 1.150700 |
|
317 1.165700 |
|
318 1.178100 |
|
319 1.148300 |
|
320 1.153600 |
|
321 1.189200 |
|
322 1.182100 |
|
323 1.183800 |
|
324 1.202900 |
|
325 1.196600 |
|
326 1.200800 |
|
327 1.153100 |
|
328 1.212400 |
|
329 1.167300 |
|
330 1.188300 |
|
331 1.179300 |
|
332 1.211400 |
|
333 1.169900 |
|
334 1.179300 |
|
335 1.153300 |
|
336 1.188900 |
|
337 1.179200 |
|
338 1.217300 |
|
339 1.169700 |
|
340 1.177700 |
|
341 1.197300 |
|
342 1.177800 |
|
343 1.169700 |
|
344 1.186800 |
|
345 1.180000 |
|
346 1.193400 |
|
347 1.171900 |
|
348 1.190000 |
|
349 1.160900 |
|
350 1.170800 |
|
351 1.166900 |
|
352 1.183200 |
|
353 1.118200 |
|
354 1.185900 |
|
355 1.157800 |
|
356 1.160200 |
|
357 1.184200 |
|
358 1.172100 |
|
359 1.143800 |
|
360 1.178000 |
|
361 1.157900 |
|
362 1.151700 |
|
363 1.196600 |
|
364 1.181800 |
|
365 1.195600 |
|
366 1.165000 |
|
367 1.157300 |
|
368 1.165200 |
|
369 1.167700 |
|
370 1.184900 |
|
371 1.168400 |
|
372 1.150500 |
|
373 1.152900 |
|
374 1.158900 |
|
375 1.143900 |
|
376 1.157200 |
|
377 1.146800 |
|
378 1.142600 |
|
379 1.140600 |
|
380 1.142400 |
|
381 1.114100 |
|
382 1.169700 |
|
383 1.142500 |
|
384 1.176000 |
|
385 1.160600 |
|
386 1.164700 |
|
387 1.124000 |
|
388 1.134500 |
|
389 1.185500 |
|
390 1.154300 |
|
391 1.125500 |
|
392 1.174400 |
|
393 1.132800 |
|
394 1.145200 |
|
395 1.129800 |
|
396 1.140600 |
|
397 1.126000 |
|
398 1.182800 |
|
399 1.127800 |
|
400 1.155000 |
|
401 1.134600 |
|
402 1.155900 |
|
403 1.150400 |
|
404 1.141700 |
|
405 1.131500 |
|
406 1.169600 |
|
407 1.170500 |
|
408 1.129100 |
|
409 1.151700 |
|
410 1.168200 |
|
411 1.109100 |
|
412 1.129700 |
|
413 1.143900 |
|
414 1.157300 |
|
415 1.128900 |
|
416 1.171500 |
|
417 1.141600 |
|
418 1.157700 |
|
419 1.137000 |
|
420 1.154000 |
|
421 1.167300 |
|
422 1.137400 |
|
423 1.121500 |
|
424 1.128500 |
|
425 1.130300 |
|
426 1.162100 |
|
427 1.155100 |
|
428 1.145300 |
|
429 1.121000 |
|
430 1.182200 |
|
431 1.157000 |
|
432 1.162300 |
|
433 1.135200 |
|
434 1.141300 |
|
435 1.151700 |
|
436 1.148000 |
|
437 1.132500 |
|
438 1.163000 |
|
439 1.116300 |
|
440 1.142000 |
|
441 1.091700 |
|
442 1.141500 |
|
443 1.154900 |
|
444 1.120400 |
|
445 1.173700 |
|
446 1.138300 |
|
447 1.135600 |
|
448 1.138800 |
|
449 1.126800 |
|
450 1.129400 |
|
451 1.146300 |
|
452 1.104200 |
|
453 1.163500 |
|
454 1.169300 |
|
455 1.147100 |
|
456 1.157100 |
|
457 1.122100 |
|
458 1.121900 |
|
459 1.150500 |
|
460 1.115700 |
|
461 1.121100 |
|
462 1.123400 |
|
463 1.097500 |
|
464 1.103800 |
|
465 1.167700 |
|
466 1.130000 |
|
467 1.164500 |
|
468 1.127200 |
|
469 1.133800 |
|
470 1.132700 |
|
471 1.122800 |
|
472 1.159500 |
|
473 1.122900 |
|
474 1.105000 |
|
475 1.145700 |
|
476 1.086400 |
|
477 1.112600 |
|
478 1.139300 |
|
479 1.135000 |
|
480 1.135200 |
|
481 1.117500 |
|
482 1.102300 |
|
483 1.147700 |
|
484 1.119200 |
|
485 1.125800 |
|
486 1.135400 |
|
487 1.149500 |
|
488 1.099400 |
|
489 1.153900 |
|
490 1.122700 |
|
491 1.089400 |
|
492 1.167200 |
|
493 1.151300 |
|
494 1.131400 |
|
495 1.131400 |
|
496 1.145200 |
|
497 1.125700 |
|
498 1.119300 |
|
499 1.128600 |
|
500 1.121000 |
|
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/transformers/generation/utils.py:1220: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation) |
|
"You have modified the pretrained model configuration to control generation. This is a" |
|
/home/matt/hf/sqllama-V0/.venv/lib/python3.7/site-packages/torch/utils/checkpoint.py:31: UserWarning: None of the inputs have requires_grad=True. Gradients will be None |
|
warnings.warn("None of the inputs have requires_grad=True. Gradients will be None") |
|
Output exceeds the size limit. Open the full output data in a text editor |
|
from model |
|
<unk>table: 2-11561331-17 |
|
columns: Name,Actual version,System,Platform,License |
|
Q: Which System's Name is Steem, and has a Freeware License? |
|
A: SELECT Name FROM 2-11561331-17 WHERE License = 'Freeware' AND System = 'Steem' |
|
END |
|
\end{code} |
|
|
|
|
|
|
|
expected answer |
|
SELECT System FROM 2-11561331-17 WHERE License = 'freeware' AND Name = 'steem' |
|
END |
|
|
|
from model |
|
<unk>table: 1-18847736-2 |
|
columns: Game,Date,Opponent,Result,Dolphins points,Opponents,Record,Attendance |
|
Q: What is the date when the opponent is the New England Patriots? |
|
A: SELECT Date FROM 1-18847736-2 WHERE Opponent = 'New England Patriots' |
|
END |
|
\end |
|
|
|
expected answer |
|
SELECT Date FROM 1-18847736-2 WHERE Opponent = 'New England Patriots' |
|
END |
|
... |
|
expected answer |
|
SELECT Manufacturer FROM 1-17801022-1 WHERE Date = 'November 2' |
|
END |
|
|