spellingdragon's picture
Update handler.py
acdd9da
raw
history blame
2.25 kB
from typing import Dict, List, Any
import torch
from transformers.pipelines.audio_utils import ffmpeg_read
from transformers import WhisperProcessor, AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, pipeline
class EndpointHandler():
def __init__(self, path=""):
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
#torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
#model_id = path
#model = AutoModelForSpeechSeq2Seq.from_pretrained(
# model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
#)
#model.to(device)
#processor = AutoProcessor.from_pretrained(model_id)
#processor = WhisperProcessor.from_pretrained(model_id)
#self.pipeline = pipeline(
# "automatic-speech-recognition",
# model=model,
# tokenizer=processor.tokenizer,
# feature_extractor=processor.feature_extractor,
# max_new_tokens=128,
# chunk_length_s=30,
# batch_size=16,
# return_timestamps=True,
# torch_dtype=torch_dtype,
# device=device,
#)
#self.model = model
def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
- "label": A string representing what the label/class is. There can be multiple labels.
- "score": A score between 0 and 1 describing how confident the model is for this label/class.
"""
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
result = self.pipeline(inputs, return_timestamps=True, **parameters)
else:
result = self.pipeline(inputs, return_timestamps=True, generate_kwargs={"task": "translate"})
# postprocess the prediction
return {"chunks": result["chunks"]}