yingzhi commited on
Commit
bdbfab5
·
1 Parent(s): 3df4496

small fixes

Browse files
Files changed (1) hide show
  1. README.md +10 -6
README.md CHANGED
@@ -25,7 +25,7 @@ The pre-trained model takes texts or phonemes as input and produces a spectrogra
25
 
26
  ## Install SpeechBrain
27
 
28
- ```
29
  git clone https://github.com/speechbrain/speechbrain.git
30
  cd speechbrain
31
  pip install -r requirements.txt
@@ -37,7 +37,7 @@ Please notice that we encourage you to read our tutorials and learn more about
37
 
38
  ### Perform Text-to-Speech (TTS) with FastSpeech2
39
 
40
- ```
41
  import torchaudio
42
  from speechbrain.pretrained import FastSpeech2
43
  from speechbrain.pretrained import HIFIGAN
@@ -81,7 +81,7 @@ torchaudio.save('example_TTS_input_phoneme.wav', waveforms.squeeze(1), 22050)
81
 
82
  If you want to generate multiple sentences in one-shot, you can do in this way:
83
 
84
- ```
85
  from speechbrain.pretrained import FastSpeech2
86
  fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="tmpdir_tts")
87
  items = [
@@ -89,8 +89,12 @@ items = [
89
  "How much wood would a woodchuck chuck?",
90
  "Never odd or even"
91
  ]
92
- mel_outputs, durations, pitch, energy = fastspeech2.encode_text(items)
93
-
 
 
 
 
94
  ```
95
 
96
  ### Inference on GPU
@@ -114,7 +118,7 @@ pip install -e .
114
  cd recipes/LJSpeech/TTS/fastspeech2/
115
  python train.py --device=cuda:0 --max_grad_norm=1.0 --data_folder=/your_folder/LJSpeech-1.1 hparams/train.yaml
116
  ```
117
- You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1Yb8CDCrW7JF1_jg8Xc4U15z3W37VjrY5?usp=share_link).
118
 
119
  ### Limitations
120
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
 
25
 
26
  ## Install SpeechBrain
27
 
28
+ ```bash
29
  git clone https://github.com/speechbrain/speechbrain.git
30
  cd speechbrain
31
  pip install -r requirements.txt
 
37
 
38
  ### Perform Text-to-Speech (TTS) with FastSpeech2
39
 
40
+ ```python
41
  import torchaudio
42
  from speechbrain.pretrained import FastSpeech2
43
  from speechbrain.pretrained import HIFIGAN
 
81
 
82
  If you want to generate multiple sentences in one-shot, you can do in this way:
83
 
84
+ ```python
85
  from speechbrain.pretrained import FastSpeech2
86
  fastspeech2 = FastSpeech2.from_hparams(source="speechbrain/tts-fastspeech2-ljspeech", savedir="tmpdir_tts")
87
  items = [
 
89
  "How much wood would a woodchuck chuck?",
90
  "Never odd or even"
91
  ]
92
+ mel_outputs, durations, pitch, energy = fastspeech2.encode_text(
93
+ items,
94
+ pace=1.0, # scale up/down the speed
95
+ pitch_rate=1.0, # scale up/down the pitch
96
+ energy_rate=1.0, # scale up/down the energy
97
+ )
98
  ```
99
 
100
  ### Inference on GPU
 
118
  cd recipes/LJSpeech/TTS/fastspeech2/
119
  python train.py --device=cuda:0 --max_grad_norm=1.0 --data_folder=/your_folder/LJSpeech-1.1 hparams/train.yaml
120
  ```
121
+ You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/tqyp58ogejqfres/AAAtmq7cRoOR3XTsq0iSgyKBa?dl=0).
122
 
123
  ### Limitations
124
  The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.