sangeet2020's picture
add normalize_transcript=True
78782f9
raw
history blame
1.62 kB
# Generated 2023-06-24 from:
# /netscratch/sagar/thesis/speechbrain/recipes/RescueSpeech/Enhancement/joint-training/transformers/hparams/robust_asr_16k.yaml
# yamllint disable
# Model: wav2vec2 + DNN + CTC
# Augmentation: SpecAugment
# Authors: Sangeet Sagar 2023
# ################################
# URL for the biggest whisper model.
# URL for the biggest Fairseq english whisper model.
whisper_hub: openai/whisper-large-v2
language: german
normalized_transcripts: true
## Model parameters
sample_rate: 16000
freeze_whisper: false
freeze_encoder_only: false
freeze_encoder: true
# These values are only used for the searchers.
# They needs to be hardcoded and should not be changed with Whisper.
# They are used as part of the searching process.
# The bos token of the searcher will be timestamp_index
# and will be concatenated with the bos, language and task tokens.
timestamp_index: 50363
eos_index: 50257
bos_index: 50258
# ASR model
whisper: &id003 !new:speechbrain.lobes.models.huggingface_whisper.HuggingFaceWhisper
source: !ref <whisper_hub>
freeze: !ref <freeze_whisper>
freeze_encoder: !ref <freeze_encoder>
save_path: whisper_checkpoints
encoder_only: False
decoder: &id006 !new:speechbrain.decoders.seq2seq.S2SWhisperGreedySearch
model: *id003
bos_index: 50363
eos_index: 50257
min_decode_ratio: 0.0
max_decode_ratio: 1.0
# Change the path to use a local model instead of the remote one
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
whisper: !ref <whisper>
decoder: !ref <decoder>
modules:
whisper: *id003
decoder: *id006