dwgnr commited on
Commit
a5b3ccf
·
1 Parent(s): 18beeab

update readme

Browse files
Files changed (1) hide show
  1. README.md +35 -27
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  language:
3
  - en
4
- thumbnail:
5
  tags:
6
  - automatic-speech-recognition
7
  - CTC
@@ -13,38 +13,37 @@ datasets:
13
  - switchboard
14
  metrics:
15
  - wer
16
- - ser
17
 
18
  ---
19
 
20
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
21
  <br/><br/>
22
 
23
- # CRDNN with CTC/Attention trained on Switchboard
 
 
 
24
 
25
- This repository provides all the necessary tools to perform automatic speech
26
- recognition from an end-to-end system pretrained on Switchboard (EN) within
27
- SpeechBrain. For a better experience we encourage you to learn more about
28
- [SpeechBrain](https://speechbrain.github.io).
29
  The performance of the model is the following:
30
 
31
- | Release | Swbd SER | Callhome SER | Eval2000 SER | Swbd WER | Callhome WER | Eval2000 WER | GPUs |
32
  |:--------:|:--------:|:------------:|:------------:|:--------:|:------------:|:------------:|:-----------:|
33
- | 17-09-22 | 61.93 | 65.89 | 64.44 | 16.01 | 25.12 | 20.71 | 1xA100 40GB |
34
 
35
 
36
  ## Pipeline description
37
 
38
  This ASR system is composed with 2 different but linked blocks:
39
- - Tokenizer (unigram) that transforms words into subword units and trained with
40
- the train transcriptions of Switchboard.
41
  - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
42
  N blocks of convolutional neural networks with normalisation and pooling on the
43
  frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
44
  the final acoustic representation that is given to the CTC and attention decoders.
45
 
46
  The system is trained with recordings sampled at 16kHz (single channel).
47
- The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
48
 
49
  ## Install SpeechBrain
50
 
@@ -54,10 +53,10 @@ First of all, please install SpeechBrain with the following command:
54
  pip install speechbrain
55
  ```
56
 
57
- Please notice that we encourage you to read our tutorials and learn more about
58
  [SpeechBrain](https://speechbrain.github.io).
59
 
60
- ### Transcribing your own audio files (in English)
61
 
62
  ```python
63
  from speechbrain.pretrained import EncoderDecoderASR
@@ -67,21 +66,24 @@ asr_model.transcribe_file('path/to/your/audiofile')
67
 
68
  ```
69
 
70
- ### Inference on GPU
 
71
  To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
72
 
73
  ## Parallel Inference on a Batch
74
- Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
75
 
 
76
 
 
77
 
78
- ### Training
79
- The model was trained with SpeechBrain (Commit hash: '2abd9f01').
80
  To train it from scratch follow these steps:
 
81
  1. Clone SpeechBrain:
82
  ```bash
83
  git clone https://github.com/speechbrain/speechbrain/
84
  ```
 
85
  2. Install it:
86
  ```bash
87
  cd speechbrain
@@ -91,24 +93,30 @@ pip install -e .
91
 
92
  3. Run Training:
93
  ```bash
94
- cd recipes/Switchboard/ASR/seq2seq/
95
- python train.py hparams/train_BPE_1000.yaml --data_folder=your_data_folder
96
  ```
97
 
98
- You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1SAndjcThdkO-YQF8kvwPOXlQ6LMT71vt?usp=sharing).
 
 
 
 
 
 
99
 
100
- ### Limitations
101
- The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
102
 
 
 
103
 
104
- # **About SpeechBrain**
105
  - Website: https://speechbrain.github.io/
106
- - Code: https://github.com/speechbrain/speechbrain/
107
  - HuggingFace: https://huggingface.co/speechbrain/
108
 
 
109
 
110
- # **Citing SpeechBrain**
111
- Please, cite SpeechBrain if you use it for your research or business.
112
 
113
  ```bibtex
114
  @misc{speechbrain,
 
1
  ---
2
  language:
3
  - en
4
+ thumbnail: null
5
  tags:
6
  - automatic-speech-recognition
7
  - CTC
 
13
  - switchboard
14
  metrics:
15
  - wer
16
+ - cer
17
 
18
  ---
19
 
20
  <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
21
  <br/><br/>
22
 
23
+ # CRDNN with CTC/Attention trained on Switchboard (No LM)
24
+
25
+ This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on Switchboard (EN) within SpeechBrain.
26
+ For a better experience we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io).
27
 
 
 
 
 
28
  The performance of the model is the following:
29
 
30
+ | Release | Swbd CER | Callhome CER | Eval2000 CER | Swbd WER | Callhome WER | Eval2000 WER | GPUs |
31
  |:--------:|:--------:|:------------:|:------------:|:--------:|:------------:|:------------:|:-----------:|
32
+ | 17-09-22 | 9.89 | 16.30 | 13.17 | 16.01 | 25.12 | 20.71 | 1xA100 40GB |
33
 
34
 
35
  ## Pipeline description
36
 
37
  This ASR system is composed with 2 different but linked blocks:
38
+ - Tokenizer (unigram) that transforms words into subword units trained on
39
+ the training transcriptions of the Switchboard and Fisher corpus.
40
  - Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
41
  N blocks of convolutional neural networks with normalisation and pooling on the
42
  frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
43
  the final acoustic representation that is given to the CTC and attention decoders.
44
 
45
  The system is trained with recordings sampled at 16kHz (single channel).
46
+ The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling `transcribe_file` if needed.
47
 
48
  ## Install SpeechBrain
49
 
 
53
  pip install speechbrain
54
  ```
55
 
56
+ Note that we encourage you to read our tutorials and learn more about
57
  [SpeechBrain](https://speechbrain.github.io).
58
 
59
+ ## Transcribing Your Own Audio Files
60
 
61
  ```python
62
  from speechbrain.pretrained import EncoderDecoderASR
 
66
 
67
  ```
68
 
69
+ ## Inference on GPU
70
+
71
  To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
72
 
73
  ## Parallel Inference on a Batch
 
74
 
75
+ Please, [see this Colab notebook](https://colab.research.google.com/drive/1hX5ZI9S4jHIjahFCZnhwwQmFoGAi3tmu?usp=sharing) to figure out how to transcribe in parallel a batch of input sentences using a pre-trained model.
76
 
77
+ ## Training
78
 
79
+ The model was trained with SpeechBrain (commit hash: `70904d0`).
 
80
  To train it from scratch follow these steps:
81
+
82
  1. Clone SpeechBrain:
83
  ```bash
84
  git clone https://github.com/speechbrain/speechbrain/
85
  ```
86
+
87
  2. Install it:
88
  ```bash
89
  cd speechbrain
 
93
 
94
  3. Run Training:
95
  ```bash
96
+ cd recipes/Switchboard/ASR/seq2seq
97
+ python train.py hparams/train_BPE_2000.yaml --data_folder=your_data_folder
98
  ```
99
 
100
+ ## Limitations
101
+
102
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
103
+
104
+ ## Credits
105
+
106
+ This model was trained with resources provided by the [THN Center for AI](https://www.th-nuernberg.de/en/kiz).
107
 
108
+ # About SpeechBrain
 
109
 
110
+ SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly.
111
+ Competitive or state-of-the-art performance is obtained in various domains.
112
 
 
113
  - Website: https://speechbrain.github.io/
114
+ - GitHub: https://github.com/speechbrain/speechbrain/
115
  - HuggingFace: https://huggingface.co/speechbrain/
116
 
117
+ # Citing SpeechBrain
118
 
119
+ Please cite SpeechBrain if you use it for your research or business.
 
120
 
121
  ```bibtex
122
  @misc{speechbrain,