Titouan
commited on
Commit
·
fab9c20
1
Parent(s):
a114c83
new org name
Browse files- README.md +78 -0
- asr.ckpt +3 -0
- hyperparams.yaml +153 -0
- lm.ckpt +3 -0
- normalizer.ckpt +3 -0
- tokenizer.ckpt +3 -0
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "en"
|
3 |
+
thumbnail:
|
4 |
+
tags:
|
5 |
+
- ASR
|
6 |
+
- CTC
|
7 |
+
- Attention
|
8 |
+
- pytorch
|
9 |
+
license: "apache-2.0"
|
10 |
+
datasets:
|
11 |
+
- librispeech
|
12 |
+
metrics:
|
13 |
+
- wer
|
14 |
+
- cer
|
15 |
+
---
|
16 |
+
|
17 |
+
# CRDNN with CTC/Attention and RNNLM trained on LibriSpeech
|
18 |
+
|
19 |
+
This repository provides all the necessary tools to perform automatic speech
|
20 |
+
recognition from an end-to-end system pretrained on LibriSpeech (EN) within
|
21 |
+
SpeechBrain. For a better experience we encourage you to learn more about
|
22 |
+
[SpeechBrain](https://speechbrain.github.io). The given ASR model performance are:
|
23 |
+
|
24 |
+
| Release | Test WER | GPUs |
|
25 |
+
|:-------------:|:--------------:| :--------:|
|
26 |
+
| 20-05-22 | 3.08 | 1xV100 32GB |
|
27 |
+
|
28 |
+
## Pipeline description
|
29 |
+
|
30 |
+
This ASR system is composed with 3 different but linked blocks:
|
31 |
+
1. Tokenizer (unigram) that transforms words into subword units and trained with
|
32 |
+
the train transcriptions of LibriSpeech.
|
33 |
+
2. Neural language model (RNNLM) trained on the full 10M words dataset.
|
34 |
+
3. Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of
|
35 |
+
N blocks of convolutional neural networks with normalisation and pooling on the
|
36 |
+
frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain
|
37 |
+
the final acoustic representation that is given to the CTC and attention decoders.
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
This model has been primilarly developed to be run within SpeechBrain as a pretrained ASR model
|
42 |
+
for the english language. Thanks to the flexibility of SpeechBrain, any of the 3 blocks
|
43 |
+
detailed above can be extracted and connected to you custom pipeline as long as SpeechBrain is
|
44 |
+
installed.
|
45 |
+
|
46 |
+
## Install SpeechBrain
|
47 |
+
|
48 |
+
First of all, please install SpeechBrain with the following command:
|
49 |
+
|
50 |
+
```
|
51 |
+
pip install \\we hide ! SpeechBrain is still private :p
|
52 |
+
```
|
53 |
+
|
54 |
+
Please notice that we encourage you to read our tutorials and learn more about
|
55 |
+
[SpeechBrain](https://speechbrain.github.io).
|
56 |
+
|
57 |
+
### Transcribing your own audio files
|
58 |
+
|
59 |
+
```python
|
60 |
+
from speechbrain.pretrained import EncoderDecoderASR
|
61 |
+
|
62 |
+
asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-rnnlm-librispeech")
|
63 |
+
asr_model.transcribe_file("path_to_your_file.wav")
|
64 |
+
|
65 |
+
```
|
66 |
+
|
67 |
+
#### Referencing SpeechBrain
|
68 |
+
|
69 |
+
```
|
70 |
+
@misc{SB2021,
|
71 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
72 |
+
title = {SpeechBrain},
|
73 |
+
year = {2021},
|
74 |
+
publisher = {GitHub},
|
75 |
+
journal = {GitHub repository},
|
76 |
+
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
|
77 |
+
}
|
78 |
+
```
|
asr.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e795c7e18f3bab6bd5f47060ab852233deb33d7d550e989994c8683901e18d5
|
3 |
+
size 479555971
|
hyperparams.yaml
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ############################################################################
|
2 |
+
# Model: E2E ASR with attention-based ASR
|
3 |
+
# Encoder: CRDNN model
|
4 |
+
# Decoder: GRU + beamsearch + RNNLM
|
5 |
+
# Tokens: BPE with unigram
|
6 |
+
# Authors: Ju-Chieh Chou, Mirco Ravanelli, Abdel Heba, Peter Plantinga 2020
|
7 |
+
# ############################################################################
|
8 |
+
|
9 |
+
|
10 |
+
# Feature parameters
|
11 |
+
sample_rate: 16000
|
12 |
+
n_fft: 400
|
13 |
+
n_mels: 40
|
14 |
+
|
15 |
+
# Model parameters
|
16 |
+
activation: !name:torch.nn.LeakyReLU
|
17 |
+
dropout: 0.15
|
18 |
+
cnn_blocks: 2
|
19 |
+
cnn_channels: (128, 256)
|
20 |
+
inter_layer_pooling_size: (2, 2)
|
21 |
+
cnn_kernelsize: (3, 3)
|
22 |
+
time_pooling_size: 4
|
23 |
+
rnn_class: !name:speechbrain.nnet.RNN.LSTM
|
24 |
+
rnn_layers: 4
|
25 |
+
rnn_neurons: 1024
|
26 |
+
rnn_bidirectional: True
|
27 |
+
dnn_blocks: 2
|
28 |
+
dnn_neurons: 512
|
29 |
+
emb_size: 128
|
30 |
+
dec_neurons: 1024
|
31 |
+
output_neurons: 1000 # index(blank/eos/bos) = 0
|
32 |
+
blank_index: 0
|
33 |
+
|
34 |
+
# Decoding parameters
|
35 |
+
bos_index: 0
|
36 |
+
eos_index: 0
|
37 |
+
min_decode_ratio: 0.0
|
38 |
+
max_decode_ratio: 1.0
|
39 |
+
beam_size: 80
|
40 |
+
eos_threshold: 1.5
|
41 |
+
using_max_attn_shift: True
|
42 |
+
max_attn_shift: 240
|
43 |
+
lm_weight: 0.50
|
44 |
+
coverage_penalty: 1.5
|
45 |
+
temperature: 1.25
|
46 |
+
temperature_lm: 1.25
|
47 |
+
|
48 |
+
normalize: !new:speechbrain.processing.features.InputNormalization
|
49 |
+
norm_type: global
|
50 |
+
|
51 |
+
compute_features: !new:speechbrain.lobes.features.Fbank
|
52 |
+
sample_rate: !ref <sample_rate>
|
53 |
+
n_fft: !ref <n_fft>
|
54 |
+
n_mels: !ref <n_mels>
|
55 |
+
|
56 |
+
enc: !new:speechbrain.lobes.models.CRDNN.CRDNN
|
57 |
+
input_shape: [null, null, !ref <n_mels>]
|
58 |
+
activation: !ref <activation>
|
59 |
+
dropout: !ref <dropout>
|
60 |
+
cnn_blocks: !ref <cnn_blocks>
|
61 |
+
cnn_channels: !ref <cnn_channels>
|
62 |
+
cnn_kernelsize: !ref <cnn_kernelsize>
|
63 |
+
inter_layer_pooling_size: !ref <inter_layer_pooling_size>
|
64 |
+
time_pooling: True
|
65 |
+
using_2d_pooling: False
|
66 |
+
time_pooling_size: !ref <time_pooling_size>
|
67 |
+
rnn_class: !ref <rnn_class>
|
68 |
+
rnn_layers: !ref <rnn_layers>
|
69 |
+
rnn_neurons: !ref <rnn_neurons>
|
70 |
+
rnn_bidirectional: !ref <rnn_bidirectional>
|
71 |
+
rnn_re_init: True
|
72 |
+
dnn_blocks: !ref <dnn_blocks>
|
73 |
+
dnn_neurons: !ref <dnn_neurons>
|
74 |
+
|
75 |
+
emb: !new:speechbrain.nnet.embedding.Embedding
|
76 |
+
num_embeddings: !ref <output_neurons>
|
77 |
+
embedding_dim: !ref <emb_size>
|
78 |
+
|
79 |
+
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
80 |
+
enc_dim: !ref <dnn_neurons>
|
81 |
+
input_size: !ref <emb_size>
|
82 |
+
rnn_type: gru
|
83 |
+
attn_type: location
|
84 |
+
hidden_size: !ref <dec_neurons>
|
85 |
+
attn_dim: 1024
|
86 |
+
num_layers: 1
|
87 |
+
scaling: 1.0
|
88 |
+
channels: 10
|
89 |
+
kernel_size: 100
|
90 |
+
re_init: True
|
91 |
+
dropout: !ref <dropout>
|
92 |
+
|
93 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
94 |
+
input_size: !ref <dnn_neurons>
|
95 |
+
n_neurons: !ref <output_neurons>
|
96 |
+
|
97 |
+
seq_lin: !new:speechbrain.nnet.linear.Linear
|
98 |
+
input_size: !ref <dec_neurons>
|
99 |
+
n_neurons: !ref <output_neurons>
|
100 |
+
|
101 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
102 |
+
apply_log: True
|
103 |
+
|
104 |
+
lm_model: !new:speechbrain.lobes.models.RNNLM.RNNLM
|
105 |
+
output_neurons: !ref <output_neurons>
|
106 |
+
embedding_dim: !ref <emb_size>
|
107 |
+
activation: !name:torch.nn.LeakyReLU
|
108 |
+
dropout: 0.0
|
109 |
+
rnn_layers: 2
|
110 |
+
rnn_neurons: 2048
|
111 |
+
dnn_blocks: 1
|
112 |
+
dnn_neurons: 512
|
113 |
+
return_hidden: True # For inference
|
114 |
+
|
115 |
+
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
116 |
+
|
117 |
+
asr_model: !new:torch.nn.ModuleList
|
118 |
+
- [!ref <enc>, !ref <emb>, !ref <dec>, !ref <ctc_lin>, !ref <seq_lin>]
|
119 |
+
|
120 |
+
beam_searcher: !new:speechbrain.decoders.S2SRNNBeamSearchLM
|
121 |
+
embedding: !ref <emb>
|
122 |
+
decoder: !ref <dec>
|
123 |
+
linear: !ref <seq_lin>
|
124 |
+
language_model: !ref <lm_model>
|
125 |
+
bos_index: !ref <bos_index>
|
126 |
+
eos_index: !ref <eos_index>
|
127 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
128 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
129 |
+
beam_size: !ref <beam_size>
|
130 |
+
eos_threshold: !ref <eos_threshold>
|
131 |
+
using_max_attn_shift: !ref <using_max_attn_shift>
|
132 |
+
max_attn_shift: !ref <max_attn_shift>
|
133 |
+
coverage_penalty: !ref <coverage_penalty>
|
134 |
+
lm_weight: !ref <lm_weight>
|
135 |
+
temperature: !ref <temperature>
|
136 |
+
temperature_lm: !ref <temperature_lm>
|
137 |
+
|
138 |
+
|
139 |
+
modules:
|
140 |
+
compute_features: !ref <compute_features>
|
141 |
+
normalize: !ref <normalize>
|
142 |
+
asr_model: !ref <asr_model>
|
143 |
+
asr_encoder: !ref <enc>
|
144 |
+
asr_decoder: !ref <dec>
|
145 |
+
lm_model: !ref <lm_model>
|
146 |
+
beam_searcher: !ref <beam_searcher>
|
147 |
+
|
148 |
+
|
149 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
150 |
+
loadables:
|
151 |
+
asr: !ref <asr_model>
|
152 |
+
lm: !ref <lm_model>
|
153 |
+
tokenizer: !ref <tokenizer>
|
lm.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f73e243f5f0eb070a05a2069ba5b9014232e926384cc7d5ba24cde060c84997
|
3 |
+
size 212420087
|
normalizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e11bfd7dbe13a266d13c00f6ff042a00fdbd40f3f5973928f9b49c33da32b512
|
3 |
+
size 1409
|
tokenizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37a6cba34cd520b33fd83612d5efc8ba7e351166541eb2726642bb3032234d31
|
3 |
+
size 253217
|