|
from adaface.adaface_wrapper import AdaFaceWrapper
|
|
import torch
|
|
|
|
from PIL import Image
|
|
import numpy as np
|
|
import os, argparse, glob, re
|
|
|
|
def save_images(images, num_images_per_row, subject_name, prompt, noise_level, save_dir = "samples-ada"):
|
|
if num_images_per_row > len(images):
|
|
num_images_per_row = len(images)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
num_columns = int(np.ceil(len(images) / num_images_per_row))
|
|
|
|
grid_image = Image.new('RGB', (512 * num_images_per_row, 512 * num_columns))
|
|
for i, image in enumerate(images):
|
|
image = image.resize((512, 512))
|
|
grid_image.paste(image, (512 * (i % num_images_per_row), 512 * (i // num_images_per_row)))
|
|
|
|
prompt_sig = prompt.replace(" ", "_").replace(",", "_")
|
|
grid_filepath = os.path.join(save_dir, f"{subject_name}-{prompt_sig}-noise{noise_level:.02f}.png")
|
|
if os.path.exists(grid_filepath):
|
|
grid_count = 2
|
|
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg')
|
|
while os.path.exists(grid_filepath):
|
|
grid_count += 1
|
|
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg')
|
|
|
|
grid_image.save(grid_filepath)
|
|
print(f"Saved to {grid_filepath}")
|
|
|
|
def seed_everything(seed):
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.backends.cudnn.benchmark = False
|
|
os.environ["PL_GLOBAL_SEED"] = str(seed)
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--base_model_path", type=str, default='runwayml/stable-diffusion-v1-5',
|
|
help="Type of checkpoints to use (default: SD 1.5)")
|
|
parser.add_argument("--embman_ckpt", type=str, required=True,
|
|
help="Path to the checkpoint of the embedding manager")
|
|
parser.add_argument("--subject", type=str, required=True)
|
|
parser.add_argument("--example_image_count", type=int, default=-1, help="Number of example images to use")
|
|
parser.add_argument("--out_image_count", type=int, default=4, help="Number of images to generate")
|
|
parser.add_argument("--prompt", type=str, default="a woman z in superman costume")
|
|
parser.add_argument("--noise", dest='noise_level', type=float, default=0)
|
|
parser.add_argument("--randface", action="store_true")
|
|
parser.add_argument("--scale", dest='guidance_scale', type=float, default=4,
|
|
help="Guidance scale for the diffusion model")
|
|
parser.add_argument("--id_cfg_scale", type=float, default=1,
|
|
help="CFG scale when generating the identity embeddings")
|
|
|
|
parser.add_argument("--subject_string",
|
|
type=str, default="z",
|
|
help="Subject placeholder string used in prompts to denote the concept.")
|
|
parser.add_argument("--num_vectors", type=int, default=16,
|
|
help="Number of vectors used to represent the subject.")
|
|
parser.add_argument("--num_images_per_row", type=int, default=4,
|
|
help="Number of images to display in a row in the output grid image.")
|
|
parser.add_argument("--num_inference_steps", type=int, default=50,
|
|
help="Number of DDIM inference steps")
|
|
parser.add_argument("--device", type=str, default="cuda", help="Device to run the model on")
|
|
parser.add_argument("--seed", type=int, default=42,
|
|
help="the seed (for reproducible sampling). Set to -1 to disable.")
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
if args.seed != -1:
|
|
seed_everything(args.seed)
|
|
|
|
if re.match(r"^\d+$", args.device):
|
|
args.device = f"cuda:{args.device}"
|
|
print(f"Using device {args.device}")
|
|
|
|
adaface = AdaFaceWrapper("text2img", args.base_model_path, args.embman_ckpt, args.device,
|
|
args.subject_string, args.num_vectors, args.num_inference_steps)
|
|
|
|
if not args.randface:
|
|
image_folder = args.subject
|
|
if image_folder.endswith("/"):
|
|
image_folder = image_folder[:-1]
|
|
|
|
if os.path.isfile(image_folder):
|
|
|
|
subject_name = os.path.basename(os.path.dirname(image_folder))
|
|
image_paths = [image_folder]
|
|
|
|
else:
|
|
subject_name = os.path.basename(image_folder)
|
|
image_types = ["*.jpg", "*.png", "*.jpeg"]
|
|
alltype_image_paths = []
|
|
for image_type in image_types:
|
|
|
|
image_paths = glob.glob(os.path.join(image_folder, image_type))
|
|
if len(image_paths) > 0:
|
|
alltype_image_paths.extend(image_paths)
|
|
|
|
|
|
alltype_image_paths = [image_path for image_path in alltype_image_paths if "_mask.png" not in image_path]
|
|
|
|
|
|
if args.example_image_count > 0:
|
|
image_paths = alltype_image_paths[:args.example_image_count]
|
|
else:
|
|
image_paths = alltype_image_paths
|
|
else:
|
|
subject_name = None
|
|
image_paths = None
|
|
image_folder = None
|
|
|
|
subject_name = "randface-" + str(torch.seed()) if args.randface else subject_name
|
|
rand_face_embs = torch.randn(1, 512)
|
|
|
|
pre_face_embs = rand_face_embs if args.randface else None
|
|
noise = torch.randn(args.out_image_count, 4, 64, 64).cuda()
|
|
|
|
|
|
|
|
adaface_subj_embs = adaface.generate_adaface_embeddings(image_paths, image_folder, pre_face_embs, args.randface,
|
|
out_id_embs_scale=args.id_cfg_scale, noise_level=args.noise_level,
|
|
update_text_encoder=True)
|
|
images = adaface(noise, args.prompt, args.guidance_scale, args.out_image_count, verbose=True)
|
|
save_images(images, args.num_images_per_row, subject_name, f"guide{args.guidance_scale}", args.noise_level)
|
|
|