ragflow / graphrag /search.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
4.39 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
from copy import deepcopy
import pandas as pd
from elasticsearch_dsl import Q, Search
from rag.nlp.search import Dealer
class KGSearch(Dealer):
def search(self, req, idxnm, emb_mdl=None):
def merge_into_first(sres, title=""):
df,texts = [],[]
for d in sres["hits"]["hits"]:
try:
df.append(json.loads(d["_source"]["content_with_weight"]))
except Exception as e:
texts.append(d["_source"]["content_with_weight"])
pass
if not df and not texts: return False
if df:
try:
sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + pd.DataFrame(df).to_csv()
except Exception as e:
pass
else:
sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + "\n".join(texts)
return True
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "name_kwd",
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight",
"weight_int", "weight_flt", "rank_int"
])
qst = req.get("question", "")
binary_query, keywords = self.qryr.question(qst, min_match="5%")
binary_query = self._add_filters(binary_query, req)
## Entity retrieval
bqry = deepcopy(binary_query)
bqry.filter.append(Q("terms", knowledge_graph_kwd=["entity"]))
s = Search()
s = s.query(bqry)[0: 32]
s = s.to_dict()
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.1), 1024)
s["knn"]["filter"] = bqry.to_dict()
q_vec = s["knn"]["query_vector"]
ent_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
entities = [d["name_kwd"] for d in self.es.getSource(ent_res)]
ent_ids = self.es.getDocIds(ent_res)
if merge_into_first(ent_res, "-Entities-"):
ent_ids = ent_ids[0:1]
## Community retrieval
bqry = deepcopy(binary_query)
bqry.filter.append(Q("terms", entities_kwd=entities))
bqry.filter.append(Q("terms", knowledge_graph_kwd=["community_report"]))
s = Search()
s = s.query(bqry)[0: 32]
s = s.to_dict()
comm_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
comm_ids = self.es.getDocIds(comm_res)
if merge_into_first(comm_res, "-Community Report-"):
comm_ids = comm_ids[0:1]
## Text content retrieval
bqry = deepcopy(binary_query)
bqry.filter.append(Q("terms", knowledge_graph_kwd=["text"]))
s = Search()
s = s.query(bqry)[0: 6]
s = s.to_dict()
txt_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
txt_ids = self.es.getDocIds(comm_res)
if merge_into_first(txt_res, "-Original Content-"):
txt_ids = comm_ids[0:1]
return self.SearchResult(
total=len(ent_ids) + len(comm_ids) + len(txt_ids),
ids=[*ent_ids, *comm_ids, *txt_ids],
query_vector=q_vec,
aggregation=None,
highlight=None,
field={**self.getFields(ent_res, src), **self.getFields(comm_res, src), **self.getFields(txt_res, src)},
keywords=[]
)