Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import json | |
from copy import deepcopy | |
import pandas as pd | |
from elasticsearch_dsl import Q, Search | |
from rag.nlp.search import Dealer | |
class KGSearch(Dealer): | |
def search(self, req, idxnm, emb_mdl=None): | |
def merge_into_first(sres, title=""): | |
df,texts = [],[] | |
for d in sres["hits"]["hits"]: | |
try: | |
df.append(json.loads(d["_source"]["content_with_weight"])) | |
except Exception as e: | |
texts.append(d["_source"]["content_with_weight"]) | |
pass | |
if not df and not texts: return False | |
if df: | |
try: | |
sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + pd.DataFrame(df).to_csv() | |
except Exception as e: | |
pass | |
else: | |
sres["hits"]["hits"][0]["_source"]["content_with_weight"] = title + "\n" + "\n".join(texts) | |
return True | |
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd", | |
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int", "name_kwd", | |
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight", | |
"weight_int", "weight_flt", "rank_int" | |
]) | |
qst = req.get("question", "") | |
binary_query, keywords = self.qryr.question(qst, min_match="5%") | |
binary_query = self._add_filters(binary_query, req) | |
## Entity retrieval | |
bqry = deepcopy(binary_query) | |
bqry.filter.append(Q("terms", knowledge_graph_kwd=["entity"])) | |
s = Search() | |
s = s.query(bqry)[0: 32] | |
s = s.to_dict() | |
q_vec = [] | |
if req.get("vector"): | |
assert emb_mdl, "No embedding model selected" | |
s["knn"] = self._vector( | |
qst, emb_mdl, req.get( | |
"similarity", 0.1), 1024) | |
s["knn"]["filter"] = bqry.to_dict() | |
q_vec = s["knn"]["query_vector"] | |
ent_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src) | |
entities = [d["name_kwd"] for d in self.es.getSource(ent_res)] | |
ent_ids = self.es.getDocIds(ent_res) | |
if merge_into_first(ent_res, "-Entities-"): | |
ent_ids = ent_ids[0:1] | |
## Community retrieval | |
bqry = deepcopy(binary_query) | |
bqry.filter.append(Q("terms", entities_kwd=entities)) | |
bqry.filter.append(Q("terms", knowledge_graph_kwd=["community_report"])) | |
s = Search() | |
s = s.query(bqry)[0: 32] | |
s = s.to_dict() | |
comm_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src) | |
comm_ids = self.es.getDocIds(comm_res) | |
if merge_into_first(comm_res, "-Community Report-"): | |
comm_ids = comm_ids[0:1] | |
## Text content retrieval | |
bqry = deepcopy(binary_query) | |
bqry.filter.append(Q("terms", knowledge_graph_kwd=["text"])) | |
s = Search() | |
s = s.query(bqry)[0: 6] | |
s = s.to_dict() | |
txt_res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src) | |
txt_ids = self.es.getDocIds(comm_res) | |
if merge_into_first(txt_res, "-Original Content-"): | |
txt_ids = comm_ids[0:1] | |
return self.SearchResult( | |
total=len(ent_ids) + len(comm_ids) + len(txt_ids), | |
ids=[*ent_ids, *comm_ids, *txt_ids], | |
query_vector=q_vec, | |
aggregation=None, | |
highlight=None, | |
field={**self.getFields(ent_res, src), **self.getFields(comm_res, src), **self.getFields(txt_res, src)}, | |
keywords=[] | |
) | |