Spaces:
Paused
Paused
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import os | |
from copy import deepcopy | |
import onnxruntime as ort | |
from huggingface_hub import snapshot_download | |
from api.utils.file_utils import get_project_base_directory | |
from .operators import * | |
class Recognizer(object): | |
def __init__(self, label_list, task_name, model_dir=None): | |
""" | |
If you have trouble downloading HuggingFace models, -_^ this might help!! | |
For Linux: | |
export HF_ENDPOINT=https://hf-mirror.com | |
For Windows: | |
Good luck | |
^_- | |
""" | |
if not model_dir: | |
model_dir = os.path.join( | |
get_project_base_directory(), | |
"rag/res/deepdoc") | |
model_file_path = os.path.join(model_dir, task_name + ".onnx") | |
if not os.path.exists(model_file_path): | |
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc", | |
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), | |
local_dir_use_symlinks=False) | |
model_file_path = os.path.join(model_dir, task_name + ".onnx") | |
else: | |
model_file_path = os.path.join(model_dir, task_name + ".onnx") | |
if not os.path.exists(model_file_path): | |
raise ValueError("not find model file path {}".format( | |
model_file_path)) | |
if False and ort.get_device() == "GPU": | |
options = ort.SessionOptions() | |
options.enable_cpu_mem_arena = False | |
self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')]) | |
else: | |
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider']) | |
self.input_names = [node.name for node in self.ort_sess.get_inputs()] | |
self.output_names = [node.name for node in self.ort_sess.get_outputs()] | |
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4] | |
self.label_list = label_list | |
def sort_Y_firstly(arr, threashold): | |
# sort using y1 first and then x1 | |
arr = sorted(arr, key=lambda r: (r["top"], r["x0"])) | |
for i in range(len(arr) - 1): | |
for j in range(i, -1, -1): | |
# restore the order using th | |
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \ | |
and arr[j + 1]["x0"] < arr[j]["x0"]: | |
tmp = deepcopy(arr[j]) | |
arr[j] = deepcopy(arr[j + 1]) | |
arr[j + 1] = deepcopy(tmp) | |
return arr | |
def sort_X_firstly(arr, threashold, copy=True): | |
# sort using y1 first and then x1 | |
arr = sorted(arr, key=lambda r: (r["x0"], r["top"])) | |
for i in range(len(arr) - 1): | |
for j in range(i, -1, -1): | |
# restore the order using th | |
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \ | |
and arr[j + 1]["top"] < arr[j]["top"]: | |
tmp = deepcopy(arr[j]) if copy else arr[j] | |
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1] | |
arr[j + 1] = deepcopy(tmp) if copy else tmp | |
return arr | |
def sort_C_firstly(arr, thr=0): | |
# sort using y1 first and then x1 | |
# sorted(arr, key=lambda r: (r["x0"], r["top"])) | |
arr = Recognizer.sort_X_firstly(arr, thr) | |
for i in range(len(arr) - 1): | |
for j in range(i, -1, -1): | |
# restore the order using th | |
if "C" not in arr[j] or "C" not in arr[j + 1]: | |
continue | |
if arr[j + 1]["C"] < arr[j]["C"] \ | |
or ( | |
arr[j + 1]["C"] == arr[j]["C"] | |
and arr[j + 1]["top"] < arr[j]["top"] | |
): | |
tmp = arr[j] | |
arr[j] = arr[j + 1] | |
arr[j + 1] = tmp | |
return arr | |
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"])) | |
def sort_R_firstly(arr, thr=0): | |
# sort using y1 first and then x1 | |
# sorted(arr, key=lambda r: (r["top"], r["x0"])) | |
arr = Recognizer.sort_Y_firstly(arr, thr) | |
for i in range(len(arr) - 1): | |
for j in range(i, -1, -1): | |
if "R" not in arr[j] or "R" not in arr[j + 1]: | |
continue | |
if arr[j + 1]["R"] < arr[j]["R"] \ | |
or ( | |
arr[j + 1]["R"] == arr[j]["R"] | |
and arr[j + 1]["x0"] < arr[j]["x0"] | |
): | |
tmp = arr[j] | |
arr[j] = arr[j + 1] | |
arr[j + 1] = tmp | |
return arr | |
def overlapped_area(a, b, ratio=True): | |
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"] | |
if b["x0"] > x1 or b["x1"] < x0: | |
return 0 | |
if b["bottom"] < tp or b["top"] > btm: | |
return 0 | |
x0_ = max(b["x0"], x0) | |
x1_ = min(b["x1"], x1) | |
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format( | |
tp, btm, x0, x1, b) | |
tp_ = max(b["top"], tp) | |
btm_ = min(b["bottom"], btm) | |
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format( | |
tp, btm, x0, x1, b) | |
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \ | |
x0 != 0 and btm - tp != 0 else 0 | |
if ov > 0 and ratio: | |
ov /= (x1 - x0) * (btm - tp) | |
return ov | |
def layouts_cleanup(boxes, layouts, far=2, thr=0.7): | |
def notOverlapped(a, b): | |
return any([a["x1"] < b["x0"], | |
a["x0"] > b["x1"], | |
a["bottom"] < b["top"], | |
a["top"] > b["bottom"]]) | |
i = 0 | |
while i + 1 < len(layouts): | |
j = i + 1 | |
while j < min(i + far, len(layouts)) \ | |
and (layouts[i].get("type", "") != layouts[j].get("type", "") | |
or notOverlapped(layouts[i], layouts[j])): | |
j += 1 | |
if j >= min(i + far, len(layouts)): | |
i += 1 | |
continue | |
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \ | |
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr: | |
i += 1 | |
continue | |
if layouts[i].get("score") and layouts[j].get("score"): | |
if layouts[i]["score"] > layouts[j]["score"]: | |
layouts.pop(j) | |
else: | |
layouts.pop(i) | |
continue | |
area_i, area_i_1 = 0, 0 | |
for b in boxes: | |
if not notOverlapped(b, layouts[i]): | |
area_i += Recognizer.overlapped_area(b, layouts[i], False) | |
if not notOverlapped(b, layouts[j]): | |
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False) | |
if area_i > area_i_1: | |
layouts.pop(j) | |
else: | |
layouts.pop(i) | |
return layouts | |
def create_inputs(self, imgs, im_info): | |
"""generate input for different model type | |
Args: | |
imgs (list(numpy)): list of images (np.ndarray) | |
im_info (list(dict)): list of image info | |
Returns: | |
inputs (dict): input of model | |
""" | |
inputs = {} | |
im_shape = [] | |
scale_factor = [] | |
if len(imgs) == 1: | |
inputs['image'] = np.array((imgs[0],)).astype('float32') | |
inputs['im_shape'] = np.array( | |
(im_info[0]['im_shape'],)).astype('float32') | |
inputs['scale_factor'] = np.array( | |
(im_info[0]['scale_factor'],)).astype('float32') | |
return inputs | |
for e in im_info: | |
im_shape.append(np.array((e['im_shape'],)).astype('float32')) | |
scale_factor.append(np.array((e['scale_factor'],)).astype('float32')) | |
inputs['im_shape'] = np.concatenate(im_shape, axis=0) | |
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0) | |
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs] | |
max_shape_h = max([e[0] for e in imgs_shape]) | |
max_shape_w = max([e[1] for e in imgs_shape]) | |
padding_imgs = [] | |
for img in imgs: | |
im_c, im_h, im_w = img.shape[:] | |
padding_im = np.zeros( | |
(im_c, max_shape_h, max_shape_w), dtype=np.float32) | |
padding_im[:, :im_h, :im_w] = img | |
padding_imgs.append(padding_im) | |
inputs['image'] = np.stack(padding_imgs, axis=0) | |
return inputs | |
def find_overlapped(box, boxes_sorted_by_y, naive=False): | |
if not boxes_sorted_by_y: | |
return | |
bxs = boxes_sorted_by_y | |
s, e, ii = 0, len(bxs), 0 | |
while s < e and not naive: | |
ii = (e + s) // 2 | |
pv = bxs[ii] | |
if box["bottom"] < pv["top"]: | |
e = ii | |
continue | |
if box["top"] > pv["bottom"]: | |
s = ii + 1 | |
continue | |
break | |
while s < ii: | |
if box["top"] > bxs[s]["bottom"]: | |
s += 1 | |
break | |
while e - 1 > ii: | |
if box["bottom"] < bxs[e - 1]["top"]: | |
e -= 1 | |
break | |
max_overlaped_i, max_overlaped = None, 0 | |
for i in range(s, e): | |
ov = Recognizer.overlapped_area(bxs[i], box) | |
if ov <= max_overlaped: | |
continue | |
max_overlaped_i = i | |
max_overlaped = ov | |
return max_overlaped_i | |
def find_horizontally_tightest_fit(box, boxes): | |
if not boxes: | |
return | |
min_dis, min_i = 1000000, None | |
for i,b in enumerate(boxes): | |
if box.get("layoutno", "0") != b.get("layoutno", "0"): continue | |
dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2) | |
if dis < min_dis: | |
min_i = i | |
min_dis = dis | |
return min_i | |
def find_overlapped_with_threashold(box, boxes, thr=0.3): | |
if not boxes: | |
return | |
max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0 | |
s, e = 0, len(boxes) | |
for i in range(s, e): | |
ov = Recognizer.overlapped_area(box, boxes[i]) | |
_ov = Recognizer.overlapped_area(boxes[i], box) | |
if (ov, _ov) < (max_overlapped, _max_overlapped): | |
continue | |
max_overlapped_i = i | |
max_overlapped = ov | |
_max_overlapped = _ov | |
return max_overlapped_i | |
def preprocess(self, image_list): | |
inputs = [] | |
if "scale_factor" in self.input_names: | |
preprocess_ops = [] | |
for op_info in [ | |
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'}, | |
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'}, | |
{'type': 'Permute'}, | |
{'stride': 32, 'type': 'PadStride'} | |
]: | |
new_op_info = op_info.copy() | |
op_type = new_op_info.pop('type') | |
preprocess_ops.append(eval(op_type)(**new_op_info)) | |
for im_path in image_list: | |
im, im_info = preprocess(im_path, preprocess_ops) | |
inputs.append({"image": np.array((im,)).astype('float32'), | |
"scale_factor": np.array((im_info["scale_factor"],)).astype('float32')}) | |
else: | |
hh, ww = self.input_shape | |
for img in image_list: | |
h, w = img.shape[:2] | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(np.array(img).astype('float32'), (ww, hh)) | |
# Scale input pixel values to 0 to 1 | |
img /= 255.0 | |
img = img.transpose(2, 0, 1) | |
img = img[np.newaxis, :, :, :].astype(np.float32) | |
inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]}) | |
return inputs | |
def postprocess(self, boxes, inputs, thr): | |
if "scale_factor" in self.input_names: | |
bb = [] | |
for b in boxes: | |
clsid, bbox, score = int(b[0]), b[2:], b[1] | |
if score < thr: | |
continue | |
if clsid >= len(self.label_list): | |
continue | |
bb.append({ | |
"type": self.label_list[clsid].lower(), | |
"bbox": [float(t) for t in bbox.tolist()], | |
"score": float(score) | |
}) | |
return bb | |
def xywh2xyxy(x): | |
# [x, y, w, h] to [x1, y1, x2, y2] | |
y = np.copy(x) | |
y[:, 0] = x[:, 0] - x[:, 2] / 2 | |
y[:, 1] = x[:, 1] - x[:, 3] / 2 | |
y[:, 2] = x[:, 0] + x[:, 2] / 2 | |
y[:, 3] = x[:, 1] + x[:, 3] / 2 | |
return y | |
def compute_iou(box, boxes): | |
# Compute xmin, ymin, xmax, ymax for both boxes | |
xmin = np.maximum(box[0], boxes[:, 0]) | |
ymin = np.maximum(box[1], boxes[:, 1]) | |
xmax = np.minimum(box[2], boxes[:, 2]) | |
ymax = np.minimum(box[3], boxes[:, 3]) | |
# Compute intersection area | |
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin) | |
# Compute union area | |
box_area = (box[2] - box[0]) * (box[3] - box[1]) | |
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
union_area = box_area + boxes_area - intersection_area | |
# Compute IoU | |
iou = intersection_area / union_area | |
return iou | |
def iou_filter(boxes, scores, iou_threshold): | |
sorted_indices = np.argsort(scores)[::-1] | |
keep_boxes = [] | |
while sorted_indices.size > 0: | |
# Pick the last box | |
box_id = sorted_indices[0] | |
keep_boxes.append(box_id) | |
# Compute IoU of the picked box with the rest | |
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :]) | |
# Remove boxes with IoU over the threshold | |
keep_indices = np.where(ious < iou_threshold)[0] | |
# print(keep_indices.shape, sorted_indices.shape) | |
sorted_indices = sorted_indices[keep_indices + 1] | |
return keep_boxes | |
boxes = np.squeeze(boxes).T | |
# Filter out object confidence scores below threshold | |
scores = np.max(boxes[:, 4:], axis=1) | |
boxes = boxes[scores > thr, :] | |
scores = scores[scores > thr] | |
if len(boxes) == 0: return [] | |
# Get the class with the highest confidence | |
class_ids = np.argmax(boxes[:, 4:], axis=1) | |
boxes = boxes[:, :4] | |
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]]) | |
boxes = np.multiply(boxes, input_shape, dtype=np.float32) | |
boxes = xywh2xyxy(boxes) | |
unique_class_ids = np.unique(class_ids) | |
indices = [] | |
for class_id in unique_class_ids: | |
class_indices = np.where(class_ids == class_id)[0] | |
class_boxes = boxes[class_indices, :] | |
class_scores = scores[class_indices] | |
class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2) | |
indices.extend(class_indices[class_keep_boxes]) | |
return [{ | |
"type": self.label_list[class_ids[i]].lower(), | |
"bbox": [float(t) for t in boxes[i].tolist()], | |
"score": float(scores[i]) | |
} for i in indices] | |
def __call__(self, image_list, thr=0.7, batch_size=16): | |
res = [] | |
imgs = [] | |
for i in range(len(image_list)): | |
if not isinstance(image_list[i], np.ndarray): | |
imgs.append(np.array(image_list[i])) | |
else: imgs.append(image_list[i]) | |
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size) | |
for i in range(batch_loop_cnt): | |
start_index = i * batch_size | |
end_index = min((i + 1) * batch_size, len(imgs)) | |
batch_image_list = imgs[start_index:end_index] | |
inputs = self.preprocess(batch_image_list) | |
print("preprocess") | |
for ins in inputs: | |
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr) | |
res.append(bb) | |
#seeit.save_results(image_list, res, self.label_list, threshold=thr) | |
return res | |