ragflow / deepdoc /parser /json_parser.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
4.19 kB
# -*- coding: utf-8 -*-
# The following documents are mainly referenced, and only adaptation modifications have been made
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
import json
from typing import Any, Dict, List, Optional
from rag.nlp import find_codec
class RAGFlowJsonParser:
def __init__(
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
):
super().__init__()
self.max_chunk_size = max_chunk_size * 2
self.min_chunk_size = (
min_chunk_size
if min_chunk_size is not None
else max(max_chunk_size - 200, 50)
)
def __call__(self, binary):
encoding = find_codec(binary)
txt = binary.decode(encoding, errors="ignore")
json_data = json.loads(txt)
chunks = self.split_json(json_data, True)
sections = [json.dumps(l, ensure_ascii=False) for l in chunks if l]
return sections
@staticmethod
def _json_size(data: Dict) -> int:
"""Calculate the size of the serialized JSON object."""
return len(json.dumps(data, ensure_ascii=False))
@staticmethod
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
"""Set a value in a nested dictionary based on the given path."""
for key in path[:-1]:
d = d.setdefault(key, {})
d[path[-1]] = value
def _list_to_dict_preprocessing(self, data: Any) -> Any:
if isinstance(data, dict):
# Process each key-value pair in the dictionary
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
elif isinstance(data, list):
# Convert the list to a dictionary with index-based keys
return {
str(i): self._list_to_dict_preprocessing(item)
for i, item in enumerate(data)
}
else:
# Base case: the item is neither a dict nor a list, so return it unchanged
return data
def _json_split(
self,
data: Dict[str, Any],
current_path: Optional[List[str]] = None,
chunks: Optional[List[Dict]] = None,
) -> List[Dict]:
"""
Split json into maximum size dictionaries while preserving structure.
"""
current_path = current_path or []
chunks = chunks or [{}]
if isinstance(data, dict):
for key, value in data.items():
new_path = current_path + [key]
chunk_size = self._json_size(chunks[-1])
size = self._json_size({key: value})
remaining = self.max_chunk_size - chunk_size
if size < remaining:
# Add item to current chunk
self._set_nested_dict(chunks[-1], new_path, value)
else:
if chunk_size >= self.min_chunk_size:
# Chunk is big enough, start a new chunk
chunks.append({})
# Iterate
self._json_split(value, new_path, chunks)
else:
# handle single item
self._set_nested_dict(chunks[-1], current_path, data)
return chunks
def split_json(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
) -> List[Dict]:
"""Splits JSON into a list of JSON chunks"""
if convert_lists:
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
else:
chunks = self._json_split(json_data)
# Remove the last chunk if it's empty
if not chunks[-1]:
chunks.pop()
return chunks
def split_text(
self,
json_data: Dict[str, Any],
convert_lists: bool = False,
ensure_ascii: bool = True,
) -> List[str]:
"""Splits JSON into a list of JSON formatted strings"""
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
# Convert to string
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]