ragflow / rag /raptor.py
zxsipola123456's picture
Upload 769 files
ab2ded1 verified
raw
history blame
5.22 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import traceback
from concurrent.futures import ThreadPoolExecutor, ALL_COMPLETED, wait
from threading import Lock
from typing import Tuple
import umap
import numpy as np
from sklearn.mixture import GaussianMixture
from rag.utils import num_tokens_from_string, truncate
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=256, threshold=0.1):
self._max_cluster = max_cluster
self._llm_model = llm_model
self._embd_model = embd_model
self._threshold = threshold
self._prompt = prompt
self._max_token = max_token
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int):
max_clusters = min(self._max_cluster, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
optimal_clusters = n_clusters[np.argmin(bics)]
return optimal_clusters
def __call__(self, chunks: Tuple[str, np.ndarray], random_state, callback=None):
layers = [(0, len(chunks))]
start, end = 0, len(chunks)
if len(chunks) <= 1: return
def summarize(ck_idx, lock):
nonlocal chunks
try:
texts = [chunks[i][0] for i in ck_idx]
len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts))
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
cnt = self._llm_model.chat("You're a helpful assistant.",
[{"role": "user", "content": self._prompt.format(cluster_content=cluster_content)}],
{"temperature": 0.3, "max_tokens": self._max_token}
)
cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "", cnt)
print("SUM:", cnt)
embds, _ = self._embd_model.encode([cnt])
with lock:
chunks.append((cnt, embds[0]))
except Exception as e:
print(e, flush=True)
traceback.print_stack(e)
return e
labels = []
while end - start > 1:
embeddings = [embd for _, embd in chunks[start: end]]
if len(embeddings) == 2:
summarize([start, start+1], Lock())
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
labels.extend([0,0])
layers.append((end, len(chunks)))
start = end
end = len(chunks)
continue
n_neighbors = int((len(embeddings) - 1) ** 0.8)
reduced_embeddings = umap.UMAP(
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine"
).fit_transform(embeddings)
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
if n_clusters == 1:
lbls = [0 for _ in range(len(reduced_embeddings))]
else:
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
gm.fit(reduced_embeddings)
probs = gm.predict_proba(reduced_embeddings)
lbls = [np.where(prob > self._threshold)[0] for prob in probs]
lbls = [lbl[0] if isinstance(lbl, np.ndarray) else lbl for lbl in lbls]
lock = Lock()
with ThreadPoolExecutor(max_workers=12) as executor:
threads = []
for c in range(n_clusters):
ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c]
threads.append(executor.submit(summarize, ck_idx, lock))
wait(threads, return_when=ALL_COMPLETED)
print([t.result() for t in threads])
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
labels.extend(lbls)
layers.append((end, len(chunks)))
if callback:
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
start = end
end = len(chunks)