Spaces:
Paused
Paused
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import logging | |
import os | |
import re | |
from collections import Counter | |
import numpy as np | |
from huggingface_hub import snapshot_download | |
from api.utils.file_utils import get_project_base_directory | |
from rag.nlp import rag_tokenizer | |
from .recognizer import Recognizer | |
class TableStructureRecognizer(Recognizer): | |
labels = [ | |
"table", | |
"table column", | |
"table row", | |
"table column header", | |
"table projected row header", | |
"table spanning cell", | |
] | |
def __init__(self): | |
try: | |
super().__init__(self.labels, "tsr", os.path.join( | |
get_project_base_directory(), | |
"rag/res/deepdoc")) | |
except Exception as e: | |
super().__init__(self.labels, "tsr", snapshot_download(repo_id="InfiniFlow/deepdoc", | |
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"), | |
local_dir_use_symlinks=False)) | |
def __call__(self, images, thr=0.2): | |
tbls = super().__call__(images, thr) | |
res = [] | |
# align left&right for rows, align top&bottom for columns | |
for tbl in tbls: | |
lts = [{"label": b["type"], | |
"score": b["score"], | |
"x0": b["bbox"][0], "x1": b["bbox"][2], | |
"top": b["bbox"][1], "bottom": b["bbox"][-1] | |
} for b in tbl] | |
if not lts: | |
continue | |
left = [b["x0"] for b in lts if b["label"].find( | |
"row") > 0 or b["label"].find("header") > 0] | |
right = [b["x1"] for b in lts if b["label"].find( | |
"row") > 0 or b["label"].find("header") > 0] | |
if not left: | |
continue | |
left = np.mean(left) if len(left) > 4 else np.min(left) | |
right = np.mean(right) if len(right) > 4 else np.max(right) | |
for b in lts: | |
if b["label"].find("row") > 0 or b["label"].find("header") > 0: | |
if b["x0"] > left: | |
b["x0"] = left | |
if b["x1"] < right: | |
b["x1"] = right | |
top = [b["top"] for b in lts if b["label"] == "table column"] | |
bottom = [b["bottom"] for b in lts if b["label"] == "table column"] | |
if not top: | |
res.append(lts) | |
continue | |
top = np.median(top) if len(top) > 4 else np.min(top) | |
bottom = np.median(bottom) if len(bottom) > 4 else np.max(bottom) | |
for b in lts: | |
if b["label"] == "table column": | |
if b["top"] > top: | |
b["top"] = top | |
if b["bottom"] < bottom: | |
b["bottom"] = bottom | |
res.append(lts) | |
return res | |
def is_caption(bx): | |
patt = [ | |
r"[图表]+[ 0-9::]{2,}" | |
] | |
if any([re.match(p, bx["text"].strip()) for p in patt]) \ | |
or bx["layout_type"].find("caption") >= 0: | |
return True | |
return False | |
def blockType(b): | |
patt = [ | |
("^(20|19)[0-9]{2}[年/-][0-9]{1,2}[月/-][0-9]{1,2}日*$", "Dt"), | |
(r"^(20|19)[0-9]{2}年$", "Dt"), | |
(r"^(20|19)[0-9]{2}[年-][0-9]{1,2}月*$", "Dt"), | |
("^[0-9]{1,2}[月-][0-9]{1,2}日*$", "Dt"), | |
(r"^第*[一二三四1-4]季度$", "Dt"), | |
(r"^(20|19)[0-9]{2}年*[一二三四1-4]季度$", "Dt"), | |
(r"^(20|19)[0-9]{2}[ABCDE]$", "Dt"), | |
("^[0-9.,+%/ -]+$", "Nu"), | |
(r"^[0-9A-Z/\._~-]+$", "Ca"), | |
(r"^[A-Z]*[a-z' -]+$", "En"), | |
(r"^[0-9.,+-]+[0-9A-Za-z/$¥%<>()()' -]+$", "NE"), | |
(r"^.{1}$", "Sg") | |
] | |
for p, n in patt: | |
if re.search(p, b["text"].strip()): | |
return n | |
tks = [t for t in rag_tokenizer.tokenize(b["text"]).split(" ") if len(t) > 1] | |
if len(tks) > 3: | |
if len(tks) < 12: | |
return "Tx" | |
else: | |
return "Lx" | |
if len(tks) == 1 and rag_tokenizer.tag(tks[0]) == "nr": | |
return "Nr" | |
return "Ot" | |
def construct_table(boxes, is_english=False, html=False): | |
cap = "" | |
i = 0 | |
while i < len(boxes): | |
if TableStructureRecognizer.is_caption(boxes[i]): | |
if is_english: | |
cap + " " | |
cap += boxes[i]["text"] | |
boxes.pop(i) | |
i -= 1 | |
i += 1 | |
if not boxes: | |
return [] | |
for b in boxes: | |
b["btype"] = TableStructureRecognizer.blockType(b) | |
max_type = Counter([b["btype"] for b in boxes]).items() | |
max_type = max(max_type, key=lambda x: x[1])[0] if max_type else "" | |
logging.debug("MAXTYPE: " + max_type) | |
rowh = [b["R_bott"] - b["R_top"] for b in boxes if "R" in b] | |
rowh = np.min(rowh) if rowh else 0 | |
boxes = Recognizer.sort_R_firstly(boxes, rowh / 2) | |
#for b in boxes:print(b) | |
boxes[0]["rn"] = 0 | |
rows = [[boxes[0]]] | |
btm = boxes[0]["bottom"] | |
for b in boxes[1:]: | |
b["rn"] = len(rows) - 1 | |
lst_r = rows[-1] | |
if lst_r[-1].get("R", "") != b.get("R", "") \ | |
or (b["top"] >= btm - 3 and lst_r[-1].get("R", "-1") != b.get("R", "-2") | |
): # new row | |
btm = b["bottom"] | |
b["rn"] += 1 | |
rows.append([b]) | |
continue | |
btm = (btm + b["bottom"]) / 2. | |
rows[-1].append(b) | |
colwm = [b["C_right"] - b["C_left"] for b in boxes if "C" in b] | |
colwm = np.min(colwm) if colwm else 0 | |
crosspage = len(set([b["page_number"] for b in boxes])) > 1 | |
if crosspage: | |
boxes = Recognizer.sort_X_firstly(boxes, colwm / 2, False) | |
else: | |
boxes = Recognizer.sort_C_firstly(boxes, colwm / 2) | |
boxes[0]["cn"] = 0 | |
cols = [[boxes[0]]] | |
right = boxes[0]["x1"] | |
for b in boxes[1:]: | |
b["cn"] = len(cols) - 1 | |
lst_c = cols[-1] | |
if (int(b.get("C", "1")) - int(lst_c[-1].get("C", "1")) == 1 and b["page_number"] == lst_c[-1][ | |
"page_number"]) \ | |
or (b["x0"] >= right and lst_c[-1].get("C", "-1") != b.get("C", "-2")): # new col | |
right = b["x1"] | |
b["cn"] += 1 | |
cols.append([b]) | |
continue | |
right = (right + b["x1"]) / 2. | |
cols[-1].append(b) | |
tbl = [[[] for _ in range(len(cols))] for _ in range(len(rows))] | |
for b in boxes: | |
tbl[b["rn"]][b["cn"]].append(b) | |
if len(rows) >= 4: | |
# remove single in column | |
j = 0 | |
while j < len(tbl[0]): | |
e, ii = 0, 0 | |
for i in range(len(tbl)): | |
if tbl[i][j]: | |
e += 1 | |
ii = i | |
if e > 1: | |
break | |
if e > 1: | |
j += 1 | |
continue | |
f = (j > 0 and tbl[ii][j - 1] and tbl[ii] | |
[j - 1][0].get("text")) or j == 0 | |
ff = (j + 1 < len(tbl[ii]) and tbl[ii][j + 1] and tbl[ii] | |
[j + 1][0].get("text")) or j + 1 >= len(tbl[ii]) | |
if f and ff: | |
j += 1 | |
continue | |
bx = tbl[ii][j][0] | |
logging.debug("Relocate column single: " + bx["text"]) | |
# j column only has one value | |
left, right = 100000, 100000 | |
if j > 0 and not f: | |
for i in range(len(tbl)): | |
if tbl[i][j - 1]: | |
left = min(left, np.min( | |
[bx["x0"] - a["x1"] for a in tbl[i][j - 1]])) | |
if j + 1 < len(tbl[0]) and not ff: | |
for i in range(len(tbl)): | |
if tbl[i][j + 1]: | |
right = min(right, np.min( | |
[a["x0"] - bx["x1"] for a in tbl[i][j + 1]])) | |
assert left < 100000 or right < 100000 | |
if left < right: | |
for jj in range(j, len(tbl[0])): | |
for i in range(len(tbl)): | |
for a in tbl[i][jj]: | |
a["cn"] -= 1 | |
if tbl[ii][j - 1]: | |
tbl[ii][j - 1].extend(tbl[ii][j]) | |
else: | |
tbl[ii][j - 1] = tbl[ii][j] | |
for i in range(len(tbl)): | |
tbl[i].pop(j) | |
else: | |
for jj in range(j + 1, len(tbl[0])): | |
for i in range(len(tbl)): | |
for a in tbl[i][jj]: | |
a["cn"] -= 1 | |
if tbl[ii][j + 1]: | |
tbl[ii][j + 1].extend(tbl[ii][j]) | |
else: | |
tbl[ii][j + 1] = tbl[ii][j] | |
for i in range(len(tbl)): | |
tbl[i].pop(j) | |
cols.pop(j) | |
assert len(cols) == len(tbl[0]), "Column NO. miss matched: %d vs %d" % ( | |
len(cols), len(tbl[0])) | |
if len(cols) >= 4: | |
# remove single in row | |
i = 0 | |
while i < len(tbl): | |
e, jj = 0, 0 | |
for j in range(len(tbl[i])): | |
if tbl[i][j]: | |
e += 1 | |
jj = j | |
if e > 1: | |
break | |
if e > 1: | |
i += 1 | |
continue | |
f = (i > 0 and tbl[i - 1][jj] and tbl[i - 1] | |
[jj][0].get("text")) or i == 0 | |
ff = (i + 1 < len(tbl) and tbl[i + 1][jj] and tbl[i + 1] | |
[jj][0].get("text")) or i + 1 >= len(tbl) | |
if f and ff: | |
i += 1 | |
continue | |
bx = tbl[i][jj][0] | |
logging.debug("Relocate row single: " + bx["text"]) | |
# i row only has one value | |
up, down = 100000, 100000 | |
if i > 0 and not f: | |
for j in range(len(tbl[i - 1])): | |
if tbl[i - 1][j]: | |
up = min(up, np.min( | |
[bx["top"] - a["bottom"] for a in tbl[i - 1][j]])) | |
if i + 1 < len(tbl) and not ff: | |
for j in range(len(tbl[i + 1])): | |
if tbl[i + 1][j]: | |
down = min(down, np.min( | |
[a["top"] - bx["bottom"] for a in tbl[i + 1][j]])) | |
assert up < 100000 or down < 100000 | |
if up < down: | |
for ii in range(i, len(tbl)): | |
for j in range(len(tbl[ii])): | |
for a in tbl[ii][j]: | |
a["rn"] -= 1 | |
if tbl[i - 1][jj]: | |
tbl[i - 1][jj].extend(tbl[i][jj]) | |
else: | |
tbl[i - 1][jj] = tbl[i][jj] | |
tbl.pop(i) | |
else: | |
for ii in range(i + 1, len(tbl)): | |
for j in range(len(tbl[ii])): | |
for a in tbl[ii][j]: | |
a["rn"] -= 1 | |
if tbl[i + 1][jj]: | |
tbl[i + 1][jj].extend(tbl[i][jj]) | |
else: | |
tbl[i + 1][jj] = tbl[i][jj] | |
tbl.pop(i) | |
rows.pop(i) | |
# which rows are headers | |
hdset = set([]) | |
for i in range(len(tbl)): | |
cnt, h = 0, 0 | |
for j, arr in enumerate(tbl[i]): | |
if not arr: | |
continue | |
cnt += 1 | |
if max_type == "Nu" and arr[0]["btype"] == "Nu": | |
continue | |
if any([a.get("H") for a in arr]) \ | |
or (max_type == "Nu" and arr[0]["btype"] != "Nu"): | |
h += 1 | |
if h / cnt > 0.5: | |
hdset.add(i) | |
if html: | |
return TableStructureRecognizer.__html_table(cap, hdset, | |
TableStructureRecognizer.__cal_spans(boxes, rows, | |
cols, tbl, True) | |
) | |
return TableStructureRecognizer.__desc_table(cap, hdset, | |
TableStructureRecognizer.__cal_spans(boxes, rows, cols, tbl, | |
False), | |
is_english) | |
def __html_table(cap, hdset, tbl): | |
# constrcut HTML | |
html = "<table>" | |
if cap: | |
html += f"<caption>{cap}</caption>" | |
for i in range(len(tbl)): | |
row = "<tr>" | |
txts = [] | |
for j, arr in enumerate(tbl[i]): | |
if arr is None: | |
continue | |
if not arr: | |
row += "<td></td>" if i not in hdset else "<th></th>" | |
continue | |
txt = "" | |
if arr: | |
h = min(np.min([c["bottom"] - c["top"] | |
for c in arr]) / 2, 10) | |
txt = " ".join([c["text"] | |
for c in Recognizer.sort_Y_firstly(arr, h)]) | |
txts.append(txt) | |
sp = "" | |
if arr[0].get("colspan"): | |
sp = "colspan={}".format(arr[0]["colspan"]) | |
if arr[0].get("rowspan"): | |
sp += " rowspan={}".format(arr[0]["rowspan"]) | |
if i in hdset: | |
row += f"<th {sp} >" + txt + "</th>" | |
else: | |
row += f"<td {sp} >" + txt + "</td>" | |
if i in hdset: | |
if all([t in hdset for t in txts]): | |
continue | |
for t in txts: | |
hdset.add(t) | |
if row != "<tr>": | |
row += "</tr>" | |
else: | |
row = "" | |
html += "\n" + row | |
html += "\n</table>" | |
return html | |
def __desc_table(cap, hdr_rowno, tbl, is_english): | |
# get text of every colomn in header row to become header text | |
clmno = len(tbl[0]) | |
rowno = len(tbl) | |
headers = {} | |
hdrset = set() | |
lst_hdr = [] | |
de = "的" if not is_english else " for " | |
for r in sorted(list(hdr_rowno)): | |
headers[r] = ["" for _ in range(clmno)] | |
for i in range(clmno): | |
if not tbl[r][i]: | |
continue | |
txt = " ".join([a["text"].strip() for a in tbl[r][i]]) | |
headers[r][i] = txt | |
hdrset.add(txt) | |
if all([not t for t in headers[r]]): | |
del headers[r] | |
hdr_rowno.remove(r) | |
continue | |
for j in range(clmno): | |
if headers[r][j]: | |
continue | |
if j >= len(lst_hdr): | |
break | |
headers[r][j] = lst_hdr[j] | |
lst_hdr = headers[r] | |
for i in range(rowno): | |
if i not in hdr_rowno: | |
continue | |
for j in range(i + 1, rowno): | |
if j not in hdr_rowno: | |
break | |
for k in range(clmno): | |
if not headers[j - 1][k]: | |
continue | |
if headers[j][k].find(headers[j - 1][k]) >= 0: | |
continue | |
if len(headers[j][k]) > len(headers[j - 1][k]): | |
headers[j][k] += (de if headers[j][k] | |
else "") + headers[j - 1][k] | |
else: | |
headers[j][k] = headers[j - 1][k] \ | |
+ (de if headers[j - 1][k] else "") \ | |
+ headers[j][k] | |
logging.debug( | |
f">>>>>>>>>>>>>>>>>{cap}:SIZE:{rowno}X{clmno} Header: {hdr_rowno}") | |
row_txt = [] | |
for i in range(rowno): | |
if i in hdr_rowno: | |
continue | |
rtxt = [] | |
def append(delimer): | |
nonlocal rtxt, row_txt | |
rtxt = delimer.join(rtxt) | |
if row_txt and len(row_txt[-1]) + len(rtxt) < 64: | |
row_txt[-1] += "\n" + rtxt | |
else: | |
row_txt.append(rtxt) | |
r = 0 | |
if len(headers.items()): | |
_arr = [(i - r, r) for r, _ in headers.items() if r < i] | |
if _arr: | |
_, r = min(_arr, key=lambda x: x[0]) | |
if r not in headers and clmno <= 2: | |
for j in range(clmno): | |
if not tbl[i][j]: | |
continue | |
txt = "".join([a["text"].strip() for a in tbl[i][j]]) | |
if txt: | |
rtxt.append(txt) | |
if rtxt: | |
append(":") | |
continue | |
for j in range(clmno): | |
if not tbl[i][j]: | |
continue | |
txt = "".join([a["text"].strip() for a in tbl[i][j]]) | |
if not txt: | |
continue | |
ctt = headers[r][j] if r in headers else "" | |
if ctt: | |
ctt += ":" | |
ctt += txt | |
if ctt: | |
rtxt.append(ctt) | |
if rtxt: | |
row_txt.append("; ".join(rtxt)) | |
if cap: | |
if is_english: | |
from_ = " in " | |
else: | |
from_ = "来自" | |
row_txt = [t + f"\t——{from_}“{cap}”" for t in row_txt] | |
return row_txt | |
def __cal_spans(boxes, rows, cols, tbl, html=True): | |
# caculate span | |
clft = [np.mean([c.get("C_left", c["x0"]) for c in cln]) | |
for cln in cols] | |
crgt = [np.mean([c.get("C_right", c["x1"]) for c in cln]) | |
for cln in cols] | |
rtop = [np.mean([c.get("R_top", c["top"]) for c in row]) | |
for row in rows] | |
rbtm = [np.mean([c.get("R_btm", c["bottom"]) | |
for c in row]) for row in rows] | |
for b in boxes: | |
if "SP" not in b: | |
continue | |
b["colspan"] = [b["cn"]] | |
b["rowspan"] = [b["rn"]] | |
# col span | |
for j in range(0, len(clft)): | |
if j == b["cn"]: | |
continue | |
if clft[j] + (crgt[j] - clft[j]) / 2 < b["H_left"]: | |
continue | |
if crgt[j] - (crgt[j] - clft[j]) / 2 > b["H_right"]: | |
continue | |
b["colspan"].append(j) | |
# row span | |
for j in range(0, len(rtop)): | |
if j == b["rn"]: | |
continue | |
if rtop[j] + (rbtm[j] - rtop[j]) / 2 < b["H_top"]: | |
continue | |
if rbtm[j] - (rbtm[j] - rtop[j]) / 2 > b["H_bott"]: | |
continue | |
b["rowspan"].append(j) | |
def join(arr): | |
if not arr: | |
return "" | |
return "".join([t["text"] for t in arr]) | |
# rm the spaning cells | |
for i in range(len(tbl)): | |
for j, arr in enumerate(tbl[i]): | |
if not arr: | |
continue | |
if all(["rowspan" not in a and "colspan" not in a for a in arr]): | |
continue | |
rowspan, colspan = [], [] | |
for a in arr: | |
if isinstance(a.get("rowspan", 0), list): | |
rowspan.extend(a["rowspan"]) | |
if isinstance(a.get("colspan", 0), list): | |
colspan.extend(a["colspan"]) | |
rowspan, colspan = set(rowspan), set(colspan) | |
if len(rowspan) < 2 and len(colspan) < 2: | |
for a in arr: | |
if "rowspan" in a: | |
del a["rowspan"] | |
if "colspan" in a: | |
del a["colspan"] | |
continue | |
rowspan, colspan = sorted(rowspan), sorted(colspan) | |
rowspan = list(range(rowspan[0], rowspan[-1] + 1)) | |
colspan = list(range(colspan[0], colspan[-1] + 1)) | |
assert i in rowspan, rowspan | |
assert j in colspan, colspan | |
arr = [] | |
for r in rowspan: | |
for c in colspan: | |
arr_txt = join(arr) | |
if tbl[r][c] and join(tbl[r][c]) != arr_txt: | |
arr.extend(tbl[r][c]) | |
tbl[r][c] = None if html else arr | |
for a in arr: | |
if len(rowspan) > 1: | |
a["rowspan"] = len(rowspan) | |
elif "rowspan" in a: | |
del a["rowspan"] | |
if len(colspan) > 1: | |
a["colspan"] = len(colspan) | |
elif "colspan" in a: | |
del a["colspan"] | |
tbl[rowspan[0]][colspan[0]] = arr | |
return tbl | |