Spaces:
Paused
Paused
# | |
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import sys | |
import six | |
import cv2 | |
import numpy as np | |
import math | |
from PIL import Image | |
class DecodeImage(object): | |
""" decode image """ | |
def __init__(self, | |
img_mode='RGB', | |
channel_first=False, | |
ignore_orientation=False, | |
**kwargs): | |
self.img_mode = img_mode | |
self.channel_first = channel_first | |
self.ignore_orientation = ignore_orientation | |
def __call__(self, data): | |
img = data['image'] | |
if six.PY2: | |
assert isinstance(img, str) and len( | |
img) > 0, "invalid input 'img' in DecodeImage" | |
else: | |
assert isinstance(img, bytes) and len( | |
img) > 0, "invalid input 'img' in DecodeImage" | |
img = np.frombuffer(img, dtype='uint8') | |
if self.ignore_orientation: | |
img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION | | |
cv2.IMREAD_COLOR) | |
else: | |
img = cv2.imdecode(img, 1) | |
if img is None: | |
return None | |
if self.img_mode == 'GRAY': | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) | |
elif self.img_mode == 'RGB': | |
assert img.shape[2] == 3, 'invalid shape of image[%s]' % ( | |
img.shape) | |
img = img[:, :, ::-1] | |
if self.channel_first: | |
img = img.transpose((2, 0, 1)) | |
data['image'] = img | |
return data | |
class StandardizeImage(object): | |
"""normalize image | |
Args: | |
mean (list): im - mean | |
std (list): im / std | |
is_scale (bool): whether need im / 255 | |
norm_type (str): type in ['mean_std', 'none'] | |
""" | |
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'): | |
self.mean = mean | |
self.std = std | |
self.is_scale = is_scale | |
self.norm_type = norm_type | |
def __call__(self, im, im_info): | |
""" | |
Args: | |
im (np.ndarray): image (np.ndarray) | |
im_info (dict): info of image | |
Returns: | |
im (np.ndarray): processed image (np.ndarray) | |
im_info (dict): info of processed image | |
""" | |
im = im.astype(np.float32, copy=False) | |
if self.is_scale: | |
scale = 1.0 / 255.0 | |
im *= scale | |
if self.norm_type == 'mean_std': | |
mean = np.array(self.mean)[np.newaxis, np.newaxis, :] | |
std = np.array(self.std)[np.newaxis, np.newaxis, :] | |
im -= mean | |
im /= std | |
return im, im_info | |
class NormalizeImage(object): | |
""" normalize image such as substract mean, divide std | |
""" | |
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs): | |
if isinstance(scale, str): | |
scale = eval(scale) | |
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) | |
mean = mean if mean is not None else [0.485, 0.456, 0.406] | |
std = std if std is not None else [0.229, 0.224, 0.225] | |
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3) | |
self.mean = np.array(mean).reshape(shape).astype('float32') | |
self.std = np.array(std).reshape(shape).astype('float32') | |
def __call__(self, data): | |
img = data['image'] | |
from PIL import Image | |
if isinstance(img, Image.Image): | |
img = np.array(img) | |
assert isinstance(img, | |
np.ndarray), "invalid input 'img' in NormalizeImage" | |
data['image'] = ( | |
img.astype('float32') * self.scale - self.mean) / self.std | |
return data | |
class ToCHWImage(object): | |
""" convert hwc image to chw image | |
""" | |
def __init__(self, **kwargs): | |
pass | |
def __call__(self, data): | |
img = data['image'] | |
from PIL import Image | |
if isinstance(img, Image.Image): | |
img = np.array(img) | |
data['image'] = img.transpose((2, 0, 1)) | |
return data | |
class Fasttext(object): | |
def __init__(self, path="None", **kwargs): | |
import fasttext | |
self.fast_model = fasttext.load_model(path) | |
def __call__(self, data): | |
label = data['label'] | |
fast_label = self.fast_model[label] | |
data['fast_label'] = fast_label | |
return data | |
class KeepKeys(object): | |
def __init__(self, keep_keys, **kwargs): | |
self.keep_keys = keep_keys | |
def __call__(self, data): | |
data_list = [] | |
for key in self.keep_keys: | |
data_list.append(data[key]) | |
return data_list | |
class Pad(object): | |
def __init__(self, size=None, size_div=32, **kwargs): | |
if size is not None and not isinstance(size, (int, list, tuple)): | |
raise TypeError("Type of target_size is invalid. Now is {}".format( | |
type(size))) | |
if isinstance(size, int): | |
size = [size, size] | |
self.size = size | |
self.size_div = size_div | |
def __call__(self, data): | |
img = data['image'] | |
img_h, img_w = img.shape[0], img.shape[1] | |
if self.size: | |
resize_h2, resize_w2 = self.size | |
assert ( | |
img_h < resize_h2 and img_w < resize_w2 | |
), '(h, w) of target size should be greater than (img_h, img_w)' | |
else: | |
resize_h2 = max( | |
int(math.ceil(img.shape[0] / self.size_div) * self.size_div), | |
self.size_div) | |
resize_w2 = max( | |
int(math.ceil(img.shape[1] / self.size_div) * self.size_div), | |
self.size_div) | |
img = cv2.copyMakeBorder( | |
img, | |
0, | |
resize_h2 - img_h, | |
0, | |
resize_w2 - img_w, | |
cv2.BORDER_CONSTANT, | |
value=0) | |
data['image'] = img | |
return data | |
class LinearResize(object): | |
"""resize image by target_size and max_size | |
Args: | |
target_size (int): the target size of image | |
keep_ratio (bool): whether keep_ratio or not, default true | |
interp (int): method of resize | |
""" | |
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR): | |
if isinstance(target_size, int): | |
target_size = [target_size, target_size] | |
self.target_size = target_size | |
self.keep_ratio = keep_ratio | |
self.interp = interp | |
def __call__(self, im, im_info): | |
""" | |
Args: | |
im (np.ndarray): image (np.ndarray) | |
im_info (dict): info of image | |
Returns: | |
im (np.ndarray): processed image (np.ndarray) | |
im_info (dict): info of processed image | |
""" | |
assert len(self.target_size) == 2 | |
assert self.target_size[0] > 0 and self.target_size[1] > 0 | |
im_channel = im.shape[2] | |
im_scale_y, im_scale_x = self.generate_scale(im) | |
im = cv2.resize( | |
im, | |
None, | |
None, | |
fx=im_scale_x, | |
fy=im_scale_y, | |
interpolation=self.interp) | |
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32') | |
im_info['scale_factor'] = np.array( | |
[im_scale_y, im_scale_x]).astype('float32') | |
return im, im_info | |
def generate_scale(self, im): | |
""" | |
Args: | |
im (np.ndarray): image (np.ndarray) | |
Returns: | |
im_scale_x: the resize ratio of X | |
im_scale_y: the resize ratio of Y | |
""" | |
origin_shape = im.shape[:2] | |
im_c = im.shape[2] | |
if self.keep_ratio: | |
im_size_min = np.min(origin_shape) | |
im_size_max = np.max(origin_shape) | |
target_size_min = np.min(self.target_size) | |
target_size_max = np.max(self.target_size) | |
im_scale = float(target_size_min) / float(im_size_min) | |
if np.round(im_scale * im_size_max) > target_size_max: | |
im_scale = float(target_size_max) / float(im_size_max) | |
im_scale_x = im_scale | |
im_scale_y = im_scale | |
else: | |
resize_h, resize_w = self.target_size | |
im_scale_y = resize_h / float(origin_shape[0]) | |
im_scale_x = resize_w / float(origin_shape[1]) | |
return im_scale_y, im_scale_x | |
class Resize(object): | |
def __init__(self, size=(640, 640), **kwargs): | |
self.size = size | |
def resize_image(self, img): | |
resize_h, resize_w = self.size | |
ori_h, ori_w = img.shape[:2] # (h, w, c) | |
ratio_h = float(resize_h) / ori_h | |
ratio_w = float(resize_w) / ori_w | |
img = cv2.resize(img, (int(resize_w), int(resize_h))) | |
return img, [ratio_h, ratio_w] | |
def __call__(self, data): | |
img = data['image'] | |
if 'polys' in data: | |
text_polys = data['polys'] | |
img_resize, [ratio_h, ratio_w] = self.resize_image(img) | |
if 'polys' in data: | |
new_boxes = [] | |
for box in text_polys: | |
new_box = [] | |
for cord in box: | |
new_box.append([cord[0] * ratio_w, cord[1] * ratio_h]) | |
new_boxes.append(new_box) | |
data['polys'] = np.array(new_boxes, dtype=np.float32) | |
data['image'] = img_resize | |
return data | |
class DetResizeForTest(object): | |
def __init__(self, **kwargs): | |
super(DetResizeForTest, self).__init__() | |
self.resize_type = 0 | |
self.keep_ratio = False | |
if 'image_shape' in kwargs: | |
self.image_shape = kwargs['image_shape'] | |
self.resize_type = 1 | |
if 'keep_ratio' in kwargs: | |
self.keep_ratio = kwargs['keep_ratio'] | |
elif 'limit_side_len' in kwargs: | |
self.limit_side_len = kwargs['limit_side_len'] | |
self.limit_type = kwargs.get('limit_type', 'min') | |
elif 'resize_long' in kwargs: | |
self.resize_type = 2 | |
self.resize_long = kwargs.get('resize_long', 960) | |
else: | |
self.limit_side_len = 736 | |
self.limit_type = 'min' | |
def __call__(self, data): | |
img = data['image'] | |
src_h, src_w, _ = img.shape | |
if sum([src_h, src_w]) < 64: | |
img = self.image_padding(img) | |
if self.resize_type == 0: | |
# img, shape = self.resize_image_type0(img) | |
img, [ratio_h, ratio_w] = self.resize_image_type0(img) | |
elif self.resize_type == 2: | |
img, [ratio_h, ratio_w] = self.resize_image_type2(img) | |
else: | |
# img, shape = self.resize_image_type1(img) | |
img, [ratio_h, ratio_w] = self.resize_image_type1(img) | |
data['image'] = img | |
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w]) | |
return data | |
def image_padding(self, im, value=0): | |
h, w, c = im.shape | |
im_pad = np.zeros((max(32, h), max(32, w), c), np.uint8) + value | |
im_pad[:h, :w, :] = im | |
return im_pad | |
def resize_image_type1(self, img): | |
resize_h, resize_w = self.image_shape | |
ori_h, ori_w = img.shape[:2] # (h, w, c) | |
if self.keep_ratio is True: | |
resize_w = ori_w * resize_h / ori_h | |
N = math.ceil(resize_w / 32) | |
resize_w = N * 32 | |
ratio_h = float(resize_h) / ori_h | |
ratio_w = float(resize_w) / ori_w | |
img = cv2.resize(img, (int(resize_w), int(resize_h))) | |
# return img, np.array([ori_h, ori_w]) | |
return img, [ratio_h, ratio_w] | |
def resize_image_type0(self, img): | |
""" | |
resize image to a size multiple of 32 which is required by the network | |
args: | |
img(array): array with shape [h, w, c] | |
return(tuple): | |
img, (ratio_h, ratio_w) | |
""" | |
limit_side_len = self.limit_side_len | |
h, w, c = img.shape | |
# limit the max side | |
if self.limit_type == 'max': | |
if max(h, w) > limit_side_len: | |
if h > w: | |
ratio = float(limit_side_len) / h | |
else: | |
ratio = float(limit_side_len) / w | |
else: | |
ratio = 1. | |
elif self.limit_type == 'min': | |
if min(h, w) < limit_side_len: | |
if h < w: | |
ratio = float(limit_side_len) / h | |
else: | |
ratio = float(limit_side_len) / w | |
else: | |
ratio = 1. | |
elif self.limit_type == 'resize_long': | |
ratio = float(limit_side_len) / max(h, w) | |
else: | |
raise Exception('not support limit type, image ') | |
resize_h = int(h * ratio) | |
resize_w = int(w * ratio) | |
resize_h = max(int(round(resize_h / 32) * 32), 32) | |
resize_w = max(int(round(resize_w / 32) * 32), 32) | |
try: | |
if int(resize_w) <= 0 or int(resize_h) <= 0: | |
return None, (None, None) | |
img = cv2.resize(img, (int(resize_w), int(resize_h))) | |
except BaseException: | |
print(img.shape, resize_w, resize_h) | |
sys.exit(0) | |
ratio_h = resize_h / float(h) | |
ratio_w = resize_w / float(w) | |
return img, [ratio_h, ratio_w] | |
def resize_image_type2(self, img): | |
h, w, _ = img.shape | |
resize_w = w | |
resize_h = h | |
if resize_h > resize_w: | |
ratio = float(self.resize_long) / resize_h | |
else: | |
ratio = float(self.resize_long) / resize_w | |
resize_h = int(resize_h * ratio) | |
resize_w = int(resize_w * ratio) | |
max_stride = 128 | |
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride | |
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride | |
img = cv2.resize(img, (int(resize_w), int(resize_h))) | |
ratio_h = resize_h / float(h) | |
ratio_w = resize_w / float(w) | |
return img, [ratio_h, ratio_w] | |
class E2EResizeForTest(object): | |
def __init__(self, **kwargs): | |
super(E2EResizeForTest, self).__init__() | |
self.max_side_len = kwargs['max_side_len'] | |
self.valid_set = kwargs['valid_set'] | |
def __call__(self, data): | |
img = data['image'] | |
src_h, src_w, _ = img.shape | |
if self.valid_set == 'totaltext': | |
im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext( | |
img, max_side_len=self.max_side_len) | |
else: | |
im_resized, (ratio_h, ratio_w) = self.resize_image( | |
img, max_side_len=self.max_side_len) | |
data['image'] = im_resized | |
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w]) | |
return data | |
def resize_image_for_totaltext(self, im, max_side_len=512): | |
h, w, _ = im.shape | |
resize_w = w | |
resize_h = h | |
ratio = 1.25 | |
if h * ratio > max_side_len: | |
ratio = float(max_side_len) / resize_h | |
resize_h = int(resize_h * ratio) | |
resize_w = int(resize_w * ratio) | |
max_stride = 128 | |
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride | |
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride | |
im = cv2.resize(im, (int(resize_w), int(resize_h))) | |
ratio_h = resize_h / float(h) | |
ratio_w = resize_w / float(w) | |
return im, (ratio_h, ratio_w) | |
def resize_image(self, im, max_side_len=512): | |
""" | |
resize image to a size multiple of max_stride which is required by the network | |
:param im: the resized image | |
:param max_side_len: limit of max image size to avoid out of memory in gpu | |
:return: the resized image and the resize ratio | |
""" | |
h, w, _ = im.shape | |
resize_w = w | |
resize_h = h | |
# Fix the longer side | |
if resize_h > resize_w: | |
ratio = float(max_side_len) / resize_h | |
else: | |
ratio = float(max_side_len) / resize_w | |
resize_h = int(resize_h * ratio) | |
resize_w = int(resize_w * ratio) | |
max_stride = 128 | |
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride | |
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride | |
im = cv2.resize(im, (int(resize_w), int(resize_h))) | |
ratio_h = resize_h / float(h) | |
ratio_w = resize_w / float(w) | |
return im, (ratio_h, ratio_w) | |
class KieResize(object): | |
def __init__(self, **kwargs): | |
super(KieResize, self).__init__() | |
self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[ | |
'img_scale'][1] | |
def __call__(self, data): | |
img = data['image'] | |
points = data['points'] | |
src_h, src_w, _ = img.shape | |
im_resized, scale_factor, [ratio_h, ratio_w | |
], [new_h, new_w] = self.resize_image(img) | |
resize_points = self.resize_boxes(img, points, scale_factor) | |
data['ori_image'] = img | |
data['ori_boxes'] = points | |
data['points'] = resize_points | |
data['image'] = im_resized | |
data['shape'] = np.array([new_h, new_w]) | |
return data | |
def resize_image(self, img): | |
norm_img = np.zeros([1024, 1024, 3], dtype='float32') | |
scale = [512, 1024] | |
h, w = img.shape[:2] | |
max_long_edge = max(scale) | |
max_short_edge = min(scale) | |
scale_factor = min(max_long_edge / max(h, w), | |
max_short_edge / min(h, w)) | |
resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float( | |
scale_factor) + 0.5) | |
max_stride = 32 | |
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride | |
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride | |
im = cv2.resize(img, (resize_w, resize_h)) | |
new_h, new_w = im.shape[:2] | |
w_scale = new_w / w | |
h_scale = new_h / h | |
scale_factor = np.array( | |
[w_scale, h_scale, w_scale, h_scale], dtype=np.float32) | |
norm_img[:new_h, :new_w, :] = im | |
return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w] | |
def resize_boxes(self, im, points, scale_factor): | |
points = points * scale_factor | |
img_shape = im.shape[:2] | |
points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1]) | |
points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0]) | |
return points | |
class SRResize(object): | |
def __init__(self, | |
imgH=32, | |
imgW=128, | |
down_sample_scale=4, | |
keep_ratio=False, | |
min_ratio=1, | |
mask=False, | |
infer_mode=False, | |
**kwargs): | |
self.imgH = imgH | |
self.imgW = imgW | |
self.keep_ratio = keep_ratio | |
self.min_ratio = min_ratio | |
self.down_sample_scale = down_sample_scale | |
self.mask = mask | |
self.infer_mode = infer_mode | |
def __call__(self, data): | |
imgH = self.imgH | |
imgW = self.imgW | |
images_lr = data["image_lr"] | |
transform2 = ResizeNormalize( | |
(imgW // self.down_sample_scale, imgH // self.down_sample_scale)) | |
images_lr = transform2(images_lr) | |
data["img_lr"] = images_lr | |
if self.infer_mode: | |
return data | |
images_HR = data["image_hr"] | |
label_strs = data["label"] | |
transform = ResizeNormalize((imgW, imgH)) | |
images_HR = transform(images_HR) | |
data["img_hr"] = images_HR | |
return data | |
class ResizeNormalize(object): | |
def __init__(self, size, interpolation=Image.BICUBIC): | |
self.size = size | |
self.interpolation = interpolation | |
def __call__(self, img): | |
img = img.resize(self.size, self.interpolation) | |
img_numpy = np.array(img).astype("float32") | |
img_numpy = img_numpy.transpose((2, 0, 1)) / 255 | |
return img_numpy | |
class GrayImageChannelFormat(object): | |
""" | |
format gray scale image's channel: (3,h,w) -> (1,h,w) | |
Args: | |
inverse: inverse gray image | |
""" | |
def __init__(self, inverse=False, **kwargs): | |
self.inverse = inverse | |
def __call__(self, data): | |
img = data['image'] | |
img_single_channel = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
img_expanded = np.expand_dims(img_single_channel, 0) | |
if self.inverse: | |
data['image'] = np.abs(img_expanded - 1) | |
else: | |
data['image'] = img_expanded | |
data['src_image'] = img | |
return data | |
class Permute(object): | |
"""permute image | |
Args: | |
to_bgr (bool): whether convert RGB to BGR | |
channel_first (bool): whether convert HWC to CHW | |
""" | |
def __init__(self, ): | |
super(Permute, self).__init__() | |
def __call__(self, im, im_info): | |
""" | |
Args: | |
im (np.ndarray): image (np.ndarray) | |
im_info (dict): info of image | |
Returns: | |
im (np.ndarray): processed image (np.ndarray) | |
im_info (dict): info of processed image | |
""" | |
im = im.transpose((2, 0, 1)).copy() | |
return im, im_info | |
class PadStride(object): | |
""" padding image for model with FPN, instead PadBatch(pad_to_stride) in original config | |
Args: | |
stride (bool): model with FPN need image shape % stride == 0 | |
""" | |
def __init__(self, stride=0): | |
self.coarsest_stride = stride | |
def __call__(self, im, im_info): | |
""" | |
Args: | |
im (np.ndarray): image (np.ndarray) | |
im_info (dict): info of image | |
Returns: | |
im (np.ndarray): processed image (np.ndarray) | |
im_info (dict): info of processed image | |
""" | |
coarsest_stride = self.coarsest_stride | |
if coarsest_stride <= 0: | |
return im, im_info | |
im_c, im_h, im_w = im.shape | |
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) | |
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) | |
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) | |
padding_im[:, :im_h, :im_w] = im | |
return padding_im, im_info | |
def decode_image(im_file, im_info): | |
"""read rgb image | |
Args: | |
im_file (str|np.ndarray): input can be image path or np.ndarray | |
im_info (dict): info of image | |
Returns: | |
im (np.ndarray): processed image (np.ndarray) | |
im_info (dict): info of processed image | |
""" | |
if isinstance(im_file, str): | |
with open(im_file, 'rb') as f: | |
im_read = f.read() | |
data = np.frombuffer(im_read, dtype='uint8') | |
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode | |
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
else: | |
im = im_file | |
im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32) | |
im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32) | |
return im, im_info | |
def preprocess(im, preprocess_ops): | |
# process image by preprocess_ops | |
im_info = { | |
'scale_factor': np.array( | |
[1., 1.], dtype=np.float32), | |
'im_shape': None, | |
} | |
im, im_info = decode_image(im, im_info) | |
for operator in preprocess_ops: | |
im, im_info = operator(im, im_info) | |
return im, im_info | |