ZeroShape / model /compute_graph /graph_depth.py
zxhuang1698's picture
initial commit
414b431
raw
history blame
4.89 kB
import torch
import torch.nn as nn
from utils.util import EasyDict as edict
from utils.loss import Loss
from model.depth.dpt_depth import DPTDepthModel
from utils.layers import Bottleneck_Conv
from utils.camera import unproj_depth, valid_norm_fac
class Graph(nn.Module):
def __init__(self, opt):
super().__init__()
# define the depth pred model based on omnidata
self.dpt_depth = DPTDepthModel(backbone='vitb_rn50_384')
if opt.arch.depth.pretrained is not None:
checkpoint = torch.load(opt.arch.depth.pretrained, map_location="cuda:{}".format(opt.device))
state_dict = checkpoint['model_state_dict']
self.dpt_depth.load_state_dict(state_dict)
if opt.loss_weight.intr is not None:
self.intr_feat_channels = 768
self.intr_head = nn.Sequential(
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3),
Bottleneck_Conv(self.intr_feat_channels, kernel_size=3),
)
self.intr_pool = nn.AdaptiveAvgPool2d((1, 1))
self.intr_proj = nn.Linear(self.intr_feat_channels, 3)
# init the last linear layer so it outputs zeros
nn.init.zeros_(self.intr_proj.weight)
nn.init.zeros_(self.intr_proj.bias)
self.loss_fns = Loss(opt)
def intr_param2mtx(self, opt, intr_params):
'''
Parameters:
opt: config
intr_params: [B, 3], [scale_f, delta_cx, delta_cy]
Return:
intr: [B, 3, 3]
'''
batch_size = len(intr_params)
f = 1.3875
intr = torch.zeros(3, 3).float().to(intr_params.device).unsqueeze(0).repeat(batch_size, 1, 1)
intr[:, 2, 2] += 1
# scale the focal length
# range: [-1, 1], symmetric
scale_f = torch.tanh(intr_params[:, 0])
# range: [1/4, 4], symmetric
scale_f = torch.pow(4. , scale_f)
intr[:, 0, 0] += f * opt.W * scale_f
intr[:, 1, 1] += f * opt.H * scale_f
# shift the optic center, (at most to the image border)
shift_cx = torch.tanh(intr_params[:, 1]) * opt.W / 2
shift_cy = torch.tanh(intr_params[:, 2]) * opt.H / 2
intr[:, 0, 2] += opt.W / 2 + shift_cx
intr[:, 1, 2] += opt.H / 2 + shift_cy
return intr
def forward(self, opt, var, training=False, get_loss=True):
batch_size = len(var.idx)
# predict the depth map and feature maps if needed
if opt.loss_weight.intr is None:
var.depth_pred = self.dpt_depth(var.rgb_input_map)
else:
var.depth_pred, intr_feat = self.dpt_depth(var.rgb_input_map, get_feat=True)
# predict the intrinsics
intr_feat = self.intr_head(intr_feat)
intr_feat = self.intr_pool(intr_feat).squeeze(-1).squeeze(-1)
intr_params = self.intr_proj(intr_feat)
# [B, 3, 3]
var.intr_pred = self.intr_param2mtx(opt, intr_params)
# project the predicted depth map to 3D points and normalize, [B, H*W, 3]
seen_points_3D_pred = unproj_depth(opt, var.depth_pred, var.intr_pred)
seen_points_mean_pred, seen_points_scale_pred = valid_norm_fac(seen_points_3D_pred, var.mask_input_map > 0.5)
var.seen_points_pred = (seen_points_3D_pred - seen_points_mean_pred.unsqueeze(1)) / seen_points_scale_pred.unsqueeze(-1).unsqueeze(-1)
var.seen_points_pred[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0
if 'depth_input_map' in var or training:
# project the ground truth depth map to 3D points and normalize, [B, H*W, 3]
seen_points_3D_gt = unproj_depth(opt, var.depth_input_map, var.intr)
seen_points_mean_gt, seen_points_scale_gt = valid_norm_fac(seen_points_3D_gt, var.mask_input_map > 0.5)
var.seen_points_gt = (seen_points_3D_gt - seen_points_mean_gt.unsqueeze(1)) / seen_points_scale_gt.unsqueeze(-1).unsqueeze(-1)
var.seen_points_gt[(var.mask_input_map<=0.5).view(batch_size, -1)] = 0
# record the validity mask, [B, H*W]
var.validity_mask = (var.mask_input_map>0.5).float().view(batch_size, -1)
# calculate the loss if needed
if get_loss:
loss = self.compute_loss(opt, var, training)
return var, loss
return var
def compute_loss(self, opt, var, training=False):
loss = edict()
if opt.loss_weight.depth is not None:
loss.depth = self.loss_fns.depth_loss(var.depth_pred, var.depth_input_map, var.mask_input_map)
if opt.loss_weight.intr is not None:
loss.intr = self.loss_fns.intr_loss(var.seen_points_pred, var.seen_points_gt, var.validity_mask)
return loss