Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from functools import partial | |
from timm.models.vision_transformer import Block | |
# 3D positional encoding, from https://github.com/bmild/nerf. | |
class Embedder: | |
def __init__(self, **kwargs): | |
self.kwargs = kwargs | |
self.create_embedding_fn() | |
def create_embedding_fn(self): | |
embed_fns = [] | |
d = self.kwargs['input_dims'] | |
out_dim = 0 | |
if self.kwargs['include_input']: | |
embed_fns.append(lambda x: x) | |
out_dim += d | |
max_freq = self.kwargs['max_freq_log2'] | |
N_freqs = self.kwargs['num_freqs'] | |
if self.kwargs['log_sampling']: | |
freq_bands = 2. ** torch.linspace(0., max_freq, N_freqs) | |
else: | |
freq_bands = torch.linspace(2.**0., 2.**max_freq, N_freqs) | |
for freq in freq_bands: | |
for p_fn in self.kwargs['periodic_fns']: | |
embed_fns.append(lambda x, p_fn=p_fn, | |
freq=freq: p_fn(x * freq)) | |
out_dim += d | |
self.embed_fns = embed_fns | |
self.out_dim = out_dim | |
def embed(self, inputs): | |
return torch.cat([fn(inputs) for fn in self.embed_fns], -1) | |
def get_embedder(posenc_res, input_dims=3): | |
embed_kwargs = { | |
'include_input': True, | |
'input_dims': input_dims, | |
'max_freq_log2': posenc_res-1, | |
'num_freqs': posenc_res, | |
'log_sampling': True, | |
'periodic_fns': [torch.sin, torch.cos], | |
} | |
embedder_obj = Embedder(**embed_kwargs) | |
def embed(x, eo=embedder_obj): return eo.embed(x) | |
return embed, embedder_obj.out_dim | |
class LayerScale(nn.Module): | |
def __init__(self, dim, init_values=1e-5, inplace=False): | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x): | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class Bottleneck_Linear(nn.Module): | |
def __init__(self, n_channels): | |
super().__init__() | |
self.linear1 = nn.Linear(n_channels, n_channels) | |
self.norm = nn.LayerNorm(n_channels) | |
self.linear2 = nn.Linear(n_channels, n_channels) | |
self.gelu = nn.GELU() | |
def forward(self, x): | |
x = x + self.linear2(self.gelu(self.linear1(self.norm(x)))) | |
return x | |
class Bottleneck_Conv(nn.Module): | |
def __init__(self, n_channels, kernel_size=1): | |
super().__init__() | |
self.linear1 = nn.Conv2d(n_channels, n_channels, kernel_size=kernel_size, padding=kernel_size//2, bias=False) | |
self.bn1 = nn.BatchNorm2d(n_channels) | |
self.linear2 = nn.Conv2d(n_channels, n_channels, kernel_size=kernel_size, padding=kernel_size//2, bias=False) | |
self.bn2 = nn.BatchNorm2d(n_channels) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
assert len(x.shape) in [2, 4] | |
input_dims = len(x.shape) | |
if input_dims == 2: | |
x = x.unsqueeze(-1).unsqueeze(-1) | |
residual = x | |
out = self.linear1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.linear2(out) | |
out = self.bn2(out) | |
out += residual | |
out = self.relu(out) | |
if input_dims == 2: | |
out = out.squeeze(-1).squeeze(-1) | |
return out | |
class CLIPFusionBlock_Concat(nn.Module): | |
""" | |
Fuse clip and rgb embeddings via concat-proj | |
""" | |
def __init__(self, n_channels=512, n_layers=1, act=True): | |
super().__init__() | |
proj = [Bottleneck_Linear(2 * n_channels) for _ in range(n_layers)] | |
proj.append(nn.Linear(2 * n_channels, n_channels)) | |
if act: proj.append(nn.GELU()) | |
self.proj = nn.Sequential(*proj) | |
def forward(self, sem_latent, clip_latent): | |
""" | |
sem_latent: [B, N, C] | |
clip_latent: [B, C] | |
""" | |
# [B, N, 2C] | |
latent_concat = torch.cat([sem_latent, clip_latent.unsqueeze(1).expand_as(sem_latent)], dim=-1) | |
# [B, N, C] | |
latent = self.proj(latent_concat) | |
return latent | |
class CLIPFusionBlock_Attn(nn.Module): | |
""" | |
Fuse geometric and semantic embeddings via multi-layer MHA blocks | |
""" | |
def __init__(self, n_channels=512, n_layers=1, act=True): | |
super().__init__() | |
self.attn_blocks = nn.ModuleList( | |
[Block( | |
n_channels, 8, 4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), drop_path=0.1 | |
) for _ in range(n_layers)] | |
) | |
if act: self.attn_blocks.append(nn.GELU()) | |
def forward(self, sem_latent, clip_latent): | |
""" | |
sem_latent: [B, N, C] | |
clip_latent: [B, C] | |
""" | |
# [B, 1+N, C], clip first | |
latent = torch.cat([clip_latent.unsqueeze(1), sem_latent], dim=1) | |
for attn_block in self.attn_blocks: | |
latent = attn_block(latent) | |
# [B, N, C] | |
return latent[:, 1:, :] |