zxhezexin commited on
Commit
1ac1801
1 Parent(s): 206e6cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -7,18 +7,18 @@ from huggingface_hub import hf_hub_download
7
 
8
  from lrm.inferrer import LRMInferrer
9
 
10
- def prepare_checkpoint(model_name: str):
11
 
12
- REPO_ID = f"zxhezexin/OpenLRM"
13
- FILE_NAME = f"{model_name}.pth"
14
- CACHE_PATH = f".cache"
15
 
16
- print(f"Downloading ckpt ...")
17
 
18
- ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=FILE_NAME, local_dir=CACHE_PATH)
19
- print(f"checkpoint path is {ckpt_path}")
20
 
21
- print(f"Downloaded ckpt into {CACHE_PATH}")
22
 
23
  def assert_input_image(input_image):
24
  if input_image is None:
@@ -68,13 +68,13 @@ def demo_image_to_video(inferrer: LRMInferrer):
68
  _DESCRIPTION = '''
69
  <div>
70
  <a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
71
- <a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin/OpenLRM"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
72
  </div>
73
  OpenLRM is an open-source implementation of Large Reconstruction Models.
74
 
75
  <strong>Image-to-3D in 10 seconds!</strong>
76
 
77
- <strong>Disclaimer:</strong> This demo uses `lrm-base-obj-v1` model trained on Objaverse only, which consists of synthetic data. Its performance may decrease on in-the-wild images. We use 194x194 rendering resolution here for a quick demonstration.
78
  '''
79
 
80
  with gr.Blocks(analytics_enabled=False) as iface:
@@ -157,9 +157,9 @@ def demo_image_to_video(inferrer: LRMInferrer):
157
 
158
  if __name__ == "__main__":
159
 
160
- model_name = "lrm-base-obj-v1"
161
 
162
- prepare_checkpoint(model_name)
163
 
164
  with LRMInferrer(model_name) as inferrer:
165
  iface = demo_image_to_video(inferrer)
 
7
 
8
  from lrm.inferrer import LRMInferrer
9
 
10
+ # def prepare_checkpoint(model_name: str):
11
 
12
+ # REPO_ID = f"zxhezexin/OpenLRM"
13
+ # FILE_NAME = f"{model_name}.pth"
14
+ # CACHE_PATH = f".cache"
15
 
16
+ # print(f"Downloading ckpt ...")
17
 
18
+ # ckpt_path = hf_hub_download(repo_id=REPO_ID, filename=FILE_NAME, local_dir=CACHE_PATH)
19
+ # print(f"checkpoint path is {ckpt_path}")
20
 
21
+ # print(f"Downloaded ckpt into {CACHE_PATH}")
22
 
23
  def assert_input_image(input_image):
24
  if input_image is None:
 
68
  _DESCRIPTION = '''
69
  <div>
70
  <a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
71
+ <a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
72
  </div>
73
  OpenLRM is an open-source implementation of Large Reconstruction Models.
74
 
75
  <strong>Image-to-3D in 10 seconds!</strong>
76
 
77
+ <strong>Disclaimer:</strong> This demo uses `openlrm-base-obj-1.0` model trained on Objaverse only, which consists of synthetic data. Its performance may decrease on in-the-wild images. We use 194x194 rendering resolution here for a quick demonstration.
78
  '''
79
 
80
  with gr.Blocks(analytics_enabled=False) as iface:
 
157
 
158
  if __name__ == "__main__":
159
 
160
+ model_name = "openlrm-base-obj-1.0"
161
 
162
+ # prepare_checkpoint(model_name)
163
 
164
  with LRMInferrer(model_name) as inferrer:
165
  iface = demo_image_to_video(inferrer)