Spaces:
Runtime error
Runtime error
Commit
•
9cedb26
1
Parent(s):
04d64f8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import time
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import yt_dlp as youtube_dl
|
9 |
+
from gradio_client import Client
|
10 |
+
from pyannote.audio import Pipeline
|
11 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
12 |
+
|
13 |
+
|
14 |
+
YT_LENGTH_LIMIT_S = 36000 # limit to 1 hour YouTube files
|
15 |
+
SAMPLING_RATE = 16000
|
16 |
+
|
17 |
+
API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/"
|
18 |
+
|
19 |
+
# set up the Gradio client
|
20 |
+
client = Client(API_URL)
|
21 |
+
|
22 |
+
# set up the diarization pipeline
|
23 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True)
|
24 |
+
|
25 |
+
|
26 |
+
def format_string(timestamp):
|
27 |
+
"""
|
28 |
+
Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column
|
29 |
+
is optional, and is appended within the function if not input.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
timestamp (str):
|
33 |
+
Timestamp in string format, either MM:SS or HH:MM:SS.
|
34 |
+
Returns:
|
35 |
+
seconds (float):
|
36 |
+
Total seconds corresponding to the input timestamp.
|
37 |
+
"""
|
38 |
+
split_time = timestamp.split(":")
|
39 |
+
split_time = [float(sub_time) for sub_time in split_time]
|
40 |
+
|
41 |
+
if len(split_time) == 2:
|
42 |
+
split_time.insert(0, 0)
|
43 |
+
|
44 |
+
seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2]
|
45 |
+
return seconds
|
46 |
+
|
47 |
+
|
48 |
+
# Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
49 |
+
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
50 |
+
"""
|
51 |
+
Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour
|
52 |
+
column is optional, and is appended in the function if the number of hours > 0.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
seconds (float):
|
56 |
+
Total seconds corresponding to the input timestamp.
|
57 |
+
Returns:
|
58 |
+
timestamp (str):
|
59 |
+
Timestamp in string format, either MM:SS or HH:MM:SS.
|
60 |
+
"""
|
61 |
+
if seconds is not None:
|
62 |
+
milliseconds = round(seconds * 1000.0)
|
63 |
+
|
64 |
+
hours = milliseconds // 3_600_000
|
65 |
+
milliseconds -= hours * 3_600_000
|
66 |
+
|
67 |
+
minutes = milliseconds // 60_000
|
68 |
+
milliseconds -= minutes * 60_000
|
69 |
+
|
70 |
+
seconds = milliseconds // 1_000
|
71 |
+
milliseconds -= seconds * 1_000
|
72 |
+
|
73 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
74 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
75 |
+
else:
|
76 |
+
# we have a malformed timestamp so just return it as is
|
77 |
+
return seconds
|
78 |
+
|
79 |
+
|
80 |
+
def format_as_transcription(raw_segments):
|
81 |
+
return "\n".join(
|
82 |
+
[
|
83 |
+
f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
84 |
+
for chunk in raw_segments
|
85 |
+
]
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def _return_yt_html_embed(yt_url):
|
90 |
+
video_id = yt_url.split("?v=")[-1]
|
91 |
+
HTML_str = (
|
92 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
93 |
+
" </center>"
|
94 |
+
)
|
95 |
+
return HTML_str
|
96 |
+
|
97 |
+
|
98 |
+
def download_yt_audio(yt_url, filename):
|
99 |
+
info_loader = youtube_dl.YoutubeDL()
|
100 |
+
try:
|
101 |
+
info = info_loader.extract_info(yt_url, download=False)
|
102 |
+
except youtube_dl.utils.DownloadError as err:
|
103 |
+
raise gr.Error(str(err))
|
104 |
+
|
105 |
+
file_length = info["duration_string"]
|
106 |
+
file_length_s = format_string(file_length)
|
107 |
+
|
108 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
109 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
110 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
111 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
112 |
+
|
113 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
114 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
115 |
+
try:
|
116 |
+
ydl.download([yt_url])
|
117 |
+
except youtube_dl.utils.ExtractorError as err:
|
118 |
+
raise gr.Error(str(err))
|
119 |
+
|
120 |
+
|
121 |
+
def align(transcription, segments, group_by_speaker=True):
|
122 |
+
transcription_split = transcription.split("\n")
|
123 |
+
|
124 |
+
# re-format transcription from string to List[Dict]
|
125 |
+
transcript = []
|
126 |
+
for chunk in transcription_split:
|
127 |
+
start_end, transcription = chunk[1:].split("] ")
|
128 |
+
start, end = start_end.split("->")
|
129 |
+
|
130 |
+
transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription})
|
131 |
+
|
132 |
+
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
|
133 |
+
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
|
134 |
+
new_segments = []
|
135 |
+
prev_segment = cur_segment = segments[0]
|
136 |
+
|
137 |
+
for i in range(1, len(segments)):
|
138 |
+
cur_segment = segments[i]
|
139 |
+
|
140 |
+
# check if we have changed speaker ("label")
|
141 |
+
if cur_segment["label"] != prev_segment["label"] and i < len(segments):
|
142 |
+
# add the start/end times for the super-segment to the new list
|
143 |
+
new_segments.append(
|
144 |
+
{
|
145 |
+
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
|
146 |
+
"speaker": prev_segment["label"],
|
147 |
+
}
|
148 |
+
)
|
149 |
+
prev_segment = segments[i]
|
150 |
+
|
151 |
+
# add the last segment(s) if there was no speaker change
|
152 |
+
new_segments.append(
|
153 |
+
{
|
154 |
+
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
|
155 |
+
"speaker": prev_segment["label"],
|
156 |
+
}
|
157 |
+
)
|
158 |
+
|
159 |
+
# get the end timestamps for each chunk from the ASR output
|
160 |
+
end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
|
161 |
+
segmented_preds = []
|
162 |
+
|
163 |
+
# align the diarizer timestamps and the ASR timestamps
|
164 |
+
for segment in new_segments:
|
165 |
+
# get the diarizer end timestamp
|
166 |
+
end_time = segment["segment"]["end"]
|
167 |
+
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
|
168 |
+
upto_idx = np.argmin(np.abs(end_timestamps - end_time))
|
169 |
+
|
170 |
+
if group_by_speaker:
|
171 |
+
segmented_preds.append(
|
172 |
+
{
|
173 |
+
"speaker": segment["speaker"],
|
174 |
+
"text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
|
175 |
+
"timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]),
|
176 |
+
}
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
for i in range(upto_idx + 1):
|
180 |
+
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})
|
181 |
+
|
182 |
+
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
|
183 |
+
transcript = transcript[upto_idx + 1 :]
|
184 |
+
end_timestamps = end_timestamps[upto_idx + 1 :]
|
185 |
+
|
186 |
+
# final post-processing
|
187 |
+
transcription = format_as_transcription(segmented_preds)
|
188 |
+
return transcription
|
189 |
+
|
190 |
+
|
191 |
+
def transcribe(audio_path, group_by_speaker=True):
|
192 |
+
# run Whisper JAX asynchronously using Gradio client (endpoint)
|
193 |
+
job = client.submit(
|
194 |
+
audio_path,
|
195 |
+
"transcribe",
|
196 |
+
True,
|
197 |
+
api_name="/predict_1",
|
198 |
+
)
|
199 |
+
|
200 |
+
# run diarization while we wait for Whisper JAX
|
201 |
+
diarization = diarization_pipeline(audio_path)
|
202 |
+
segments = diarization.for_json()["content"]
|
203 |
+
|
204 |
+
# only fetch the transcription result after performing diarization
|
205 |
+
transcription, _ = job.result()
|
206 |
+
|
207 |
+
# align the ASR transcriptions and diarization timestamps
|
208 |
+
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
|
209 |
+
|
210 |
+
return transcription
|
211 |
+
|
212 |
+
|
213 |
+
def transcribe_yt(yt_url, group_by_speaker=True):
|
214 |
+
# run Whisper JAX asynchronously using Gradio client (endpoint)
|
215 |
+
job = client.submit(
|
216 |
+
yt_url,
|
217 |
+
"transcribe",
|
218 |
+
True,
|
219 |
+
api_name="/predict_2",
|
220 |
+
)
|
221 |
+
|
222 |
+
_return_yt_html_embed(yt_url)
|
223 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
224 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
225 |
+
download_yt_audio(yt_url, filepath)
|
226 |
+
|
227 |
+
with open(filepath, "rb") as f:
|
228 |
+
inputs = f.read()
|
229 |
+
|
230 |
+
inputs = ffmpeg_read(inputs, SAMPLING_RATE)
|
231 |
+
inputs = torch.from_numpy(inputs).float()
|
232 |
+
inputs = inputs.unsqueeze(0)
|
233 |
+
|
234 |
+
diarization = diarization_pipeline(
|
235 |
+
{"waveform": inputs, "sample_rate": SAMPLING_RATE},
|
236 |
+
)
|
237 |
+
segments = diarization.for_json()["content"]
|
238 |
+
|
239 |
+
# only fetch the transcription result after performing diarization
|
240 |
+
transcription, _ = job.result()
|
241 |
+
|
242 |
+
# align the ASR transcriptions and diarization timestamps
|
243 |
+
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
|
244 |
+
|
245 |
+
return transcription
|
246 |
+
|
247 |
+
|
248 |
+
title = "Whisper JAX + Speaker Diarization ⚡️"
|
249 |
+
|
250 |
+
description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time.
|
251 |
+
"""
|
252 |
+
|
253 |
+
article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."
|
254 |
+
|
255 |
+
microphone = gr.Interface(
|
256 |
+
fn=transcribe,
|
257 |
+
inputs=[
|
258 |
+
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
|
259 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
260 |
+
],
|
261 |
+
outputs=[
|
262 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
263 |
+
],
|
264 |
+
allow_flagging="never",
|
265 |
+
title=title,
|
266 |
+
description=description,
|
267 |
+
article=article,
|
268 |
+
)
|
269 |
+
|
270 |
+
audio_file = gr.Interface(
|
271 |
+
fn=transcribe,
|
272 |
+
inputs=[
|
273 |
+
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
|
274 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
275 |
+
],
|
276 |
+
outputs=[
|
277 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
278 |
+
],
|
279 |
+
allow_flagging="never",
|
280 |
+
title=title,
|
281 |
+
description=description,
|
282 |
+
article=article,
|
283 |
+
)
|
284 |
+
|
285 |
+
youtube = gr.Interface(
|
286 |
+
fn=transcribe_yt,
|
287 |
+
inputs=[
|
288 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
289 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
290 |
+
],
|
291 |
+
outputs=[
|
292 |
+
gr.outputs.HTML(label="Video"),
|
293 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
294 |
+
],
|
295 |
+
allow_flagging="never",
|
296 |
+
title=title,
|
297 |
+
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]],
|
298 |
+
cache_examples=False,
|
299 |
+
description=description,
|
300 |
+
article=article,
|
301 |
+
)
|
302 |
+
|
303 |
+
demo = gr.Blocks()
|
304 |
+
|
305 |
+
with demo:
|
306 |
+
gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"])
|
307 |
+
|
308 |
+
demo.queue(concurrency_count=1, max_size=5)
|
309 |
+
demo.launch()
|