Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
from threading import Thread
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer, AutoModelForCausalLM
|
7 |
+
from peft import PeftConfig, PeftModel
|
8 |
+
from utils import get_device # Angenommen, diese Funktion existiert bereits
|
9 |
+
|
10 |
+
# Create the parser
|
11 |
+
parser = argparse.ArgumentParser(description='Check model usage.')
|
12 |
+
|
13 |
+
# Add the arguments
|
14 |
+
parser.add_argument('--baseonly', action='store_true',
|
15 |
+
help='A boolean switch to indicate base only mode')
|
16 |
+
|
17 |
+
# Execute the parse_args() method
|
18 |
+
args = parser.parse_args()
|
19 |
+
|
20 |
+
# Define model and adapter names, data type, and quantization type
|
21 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
22 |
+
adapters_name = "zurd46/eliAI"
|
23 |
+
torch_dtype = torch.bfloat16 # Set the appropriate torch data type
|
24 |
+
|
25 |
+
# Display device and CPU thread information
|
26 |
+
device = get_device()
|
27 |
+
print("Running on device:", device)
|
28 |
+
print("CPU threads:", torch.get_num_threads())
|
29 |
+
|
30 |
+
# Load tokenizer
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
|
33 |
+
# Load base model
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch_dtype)
|
35 |
+
model.resize_token_embeddings(len(tokenizer))
|
36 |
+
|
37 |
+
# Load adapter if available and not baseonly
|
38 |
+
usingAdapter = False
|
39 |
+
if not args.baseonly:
|
40 |
+
usingAdapter = True
|
41 |
+
model = PeftModel.from_pretrained(model, adapters_name)
|
42 |
+
|
43 |
+
model.to(device)
|
44 |
+
|
45 |
+
print(f"Model {model_name} loaded successfully on {device}")
|
46 |
+
|
47 |
+
# Function to run the text generation process
|
48 |
+
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
|
49 |
+
template = "\n{}\n"
|
50 |
+
model_inputs = tokenizer(template.format(user_text) if usingAdapter else user_text, return_tensors="pt")
|
51 |
+
model_inputs = model_inputs.to(device)
|
52 |
+
|
53 |
+
# Generate text in a separate thread
|
54 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
55 |
+
generate_kwargs = dict(
|
56 |
+
input_ids=model_inputs['input_ids'],
|
57 |
+
streamer=streamer,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
do_sample=True,
|
60 |
+
top_p=top_p,
|
61 |
+
temperature=float(temperature),
|
62 |
+
top_k=top_k,
|
63 |
+
pad_token_id=tokenizer.pad_token_id,
|
64 |
+
eos_token_id=tokenizer.eos_token_id
|
65 |
+
)
|
66 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
67 |
+
t.start()
|
68 |
+
|
69 |
+
# Retrieve and yield the generated text
|
70 |
+
model_output = ""
|
71 |
+
for new_text in streamer:
|
72 |
+
model_output += new_text
|
73 |
+
return model_output
|
74 |
+
|
75 |
+
# Gradio UI setup
|
76 |
+
with gr.Blocks(css="""
|
77 |
+
div.svelte-sfqy0y {
|
78 |
+
display: flex;
|
79 |
+
flex-direction: inherit;
|
80 |
+
flex-wrap: wrap;
|
81 |
+
gap: var(--form-gap-width);
|
82 |
+
box-shadow: var(--block-shadow);
|
83 |
+
border: var(--block-border-width) solid var(--border-color-primary);
|
84 |
+
border-radius: var(--block-radius);
|
85 |
+
background: var(--block-background-fill);
|
86 |
+
overflow-y: hidden;
|
87 |
+
padding: 20px;
|
88 |
+
}
|
89 |
+
body {
|
90 |
+
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
91 |
+
background-color: var(--body-background-fill);
|
92 |
+
color: #e0e0e0;
|
93 |
+
margin: 0;
|
94 |
+
padding: 0;
|
95 |
+
box-sizing: border-box;
|
96 |
+
}
|
97 |
+
.gradio-container {
|
98 |
+
max-width: 900px;
|
99 |
+
margin: auto;
|
100 |
+
padding: 20px;
|
101 |
+
border-radius: 8px;
|
102 |
+
box-shadow: 0 0 10px rgba(0,0,0,0.5);
|
103 |
+
background: var(--body-background-fill);
|
104 |
+
}
|
105 |
+
.gr-button {
|
106 |
+
background-color: var(--block-background-fill);
|
107 |
+
color: white;
|
108 |
+
border: none;
|
109 |
+
border-radius: 4px;
|
110 |
+
padding: 10px 24px;
|
111 |
+
cursor: pointer;
|
112 |
+
}
|
113 |
+
.gr-button:hover {
|
114 |
+
background-color: #3700b3;
|
115 |
+
}
|
116 |
+
.gr-slider input[type=range] {
|
117 |
+
-webkit-appearance: none;
|
118 |
+
width: 100%;
|
119 |
+
height: 8px;
|
120 |
+
border-radius: 5px;
|
121 |
+
background: #333;
|
122 |
+
outline: none;
|
123 |
+
opacity: 0.9;
|
124 |
+
-webkit-transition: .2s;
|
125 |
+
transition: opacity .2s;
|
126 |
+
}
|
127 |
+
.gr-slider input[type=range]:hover {
|
128 |
+
opacity: 1;
|
129 |
+
}
|
130 |
+
.gr-textbox {
|
131 |
+
background-color: var(--block-background-fill);
|
132 |
+
color: white;
|
133 |
+
border: none;
|
134 |
+
border-radius: 4px;
|
135 |
+
padding: 10px;
|
136 |
+
}
|
137 |
+
.chatbox {
|
138 |
+
max-height: 400px;
|
139 |
+
overflow-y: auto;
|
140 |
+
margin-bottom: 20px;
|
141 |
+
}
|
142 |
+
""") as demo:
|
143 |
+
gr.Markdown(
|
144 |
+
"""
|
145 |
+
<div style="text-align: center; padding: 20px;">
|
146 |
+
<h1>🌙 eliAI Text Generation Interface</h1>
|
147 |
+
<h3>Model: Phi-3-mini-4k-instruct</h3>
|
148 |
+
<h4>Developed by Daniel Zurmühle</h4>
|
149 |
+
</div>
|
150 |
+
""")
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
with gr.Column(scale=3):
|
154 |
+
user_text = gr.Textbox(placeholder="Enter your question here", label="User Input", lines=3, elem_classes="gr-textbox")
|
155 |
+
button_submit = gr.Button(value="Submit", elem_classes="gr-button")
|
156 |
+
|
157 |
+
max_new_tokens = gr.Slider(minimum=1, maximum=1000, value=1000, step=1, label="Max New Tokens")
|
158 |
+
top_p = gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)")
|
159 |
+
top_k = gr.Slider(minimum=1, maximum=50, value=50, step=1, label="Top-k")
|
160 |
+
temperature = gr.Slider(minimum=0.1, maximum=5.0, value=0.8, step=0.1, label="Temperature")
|
161 |
+
|
162 |
+
with gr.Column(scale=7):
|
163 |
+
model_output = gr.Chatbot(label="Chatbot Output", height=566)
|
164 |
+
|
165 |
+
def handle_submit(text, top_p, temperature, top_k, max_new_tokens):
|
166 |
+
response = run_generation(text, top_p, temperature, top_k, max_new_tokens)
|
167 |
+
return [(text, response)]
|
168 |
+
|
169 |
+
button_submit.click(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
170 |
+
user_text.submit(handle_submit, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
|
171 |
+
|
172 |
+
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860)
|