Spaces:
Sleeping
Sleeping
Updated chatbot
Browse files- app.py +89 -34
- requirements.txt +1 -1
app.py
CHANGED
@@ -1,46 +1,101 @@
|
|
1 |
-
import gradio as gr
|
2 |
from threading import Thread
|
3 |
-
from
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
print("Loading the model...")
|
9 |
-
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
10 |
-
print("Done!")
|
11 |
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
def update_chatbot(history):
|
23 |
-
user_query = history[-1][0]
|
24 |
-
history[-1][1] = ""
|
25 |
-
model_inputs = tokenizer([user_query], return_tensors="pt")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
streamer = IteratorStreamer(tokenizer)
|
30 |
-
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=200, do_sample=True)
|
31 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
32 |
-
t.start()
|
33 |
|
34 |
-
# Pull the generated text from the streamer, and update the chatbot.
|
35 |
-
for new_text in streamer:
|
36 |
-
history[-1][1] += new_text
|
37 |
-
yield history
|
38 |
-
return history
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
-
|
|
|
44 |
|
45 |
-
demo.queue()
|
46 |
-
demo.launch()
|
|
|
|
|
1 |
from threading import Thread
|
2 |
+
from functools import lru_cache
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, TextIteratorStreamer
|
6 |
+
|
7 |
|
8 |
+
@lru_cache(maxsize=1) # only cache the latest model
|
9 |
+
def get_model_and_tokenizer(model_id):
|
10 |
+
config = AutoConfig.from_pretrained(model_id)
|
11 |
+
if config.is_encoder_decoder:
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
13 |
+
else:
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
15 |
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
+
return model, tokenizer
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
+
def run_generation(model_id, user_text, top_p, temperature, top_k, chat_counter, max_new_tokens, history):
|
21 |
+
if history is None:
|
22 |
+
history = []
|
23 |
+
history.append[[user_text, ""]]
|
24 |
+
|
25 |
+
# Get the model and tokenizer, and tokenize the user text.
|
26 |
+
model, tokenizer = get_model_and_tokenizer(model_id)
|
27 |
+
model_inputs = tokenizer([user_text], return_tensors="pt")
|
28 |
+
|
29 |
+
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
|
30 |
+
# in the main thread.
|
31 |
+
streamer = TextIteratorStreamer(tokenizer)
|
32 |
+
generate_kwargs = dict(
|
33 |
+
model_inputs,
|
34 |
+
streamer=streamer,
|
35 |
+
max_new_tokens=max_new_tokens,
|
36 |
+
do_sample=True,
|
37 |
+
top_p=top_p,
|
38 |
+
temperature=temperature,
|
39 |
+
top_k=top_k
|
40 |
+
)
|
41 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
42 |
+
t.start()
|
43 |
|
44 |
+
# Pull the generated text from the streamer, and update the chatbot.
|
45 |
+
for new_text in streamer:
|
46 |
+
history[-1][1] += new_text
|
47 |
+
yield history
|
48 |
+
return history
|
49 |
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def reset_textbox():
|
52 |
+
return gr.update(value='')
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
title = """<h1 align="center">🔥Transformers + Gradio 🚀Streaming🚀</h1>"""
|
56 |
+
|
57 |
+
|
58 |
+
with gr.Blocks(
|
59 |
+
css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
60 |
+
#chatbot {height: 520px; overflow: auto;}"""
|
61 |
+
) as demo:
|
62 |
+
gr.HTML(title)
|
63 |
+
demo_link = "https://huggingface.co/spaces/joaogante/chatbot_transformers_streaming"
|
64 |
+
img_src = "https://bit.ly/3gLdBN6"
|
65 |
+
button_desc = "Duplicate the Space to bypass queues, add hardware resources, or to use this demo as a template!"
|
66 |
+
gr.HTML(f'''<center><a href="{demo_link}?duplicate=true"><img src="{img_src}" alt="Duplicate Space"></a>{button_desc}</center>''')
|
67 |
+
|
68 |
+
with gr.Column(elem_id="col_container"):
|
69 |
+
model_id = gr.Textbox(value='EleutherAI/pythia-410m', label="🤗 Hub Model repo")
|
70 |
+
chatbot = gr.Chatbot(elem_id='chatbot')
|
71 |
+
user_text = gr.Textbox(placeholder="Is pineapple a pizza topping?", label="Type an input and press Enter")
|
72 |
+
button = gr.Button()
|
73 |
+
|
74 |
+
with gr.Accordion("Parameters", open=False):
|
75 |
+
top_p = gr.Slider(
|
76 |
+
minimum=0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
|
77 |
+
)
|
78 |
+
temperature = gr.Slider(
|
79 |
+
minimum=0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature (set to 0 for Greedy Decoding)",
|
80 |
+
)
|
81 |
+
top_k = gr.Slider(
|
82 |
+
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
|
83 |
+
)
|
84 |
+
max_new_tokens = gr.Slider(
|
85 |
+
minimum=1, maximum=1000, value=100, step=1, interactive=True, label="Max New Tokens",
|
86 |
+
)
|
87 |
+
|
88 |
+
user_text.submit(
|
89 |
+
run_generation,
|
90 |
+
[model_id, user_text, top_p, temperature, top_k, max_new_tokens, chatbot, chatbot],
|
91 |
+
[chatbot, chatbot]
|
92 |
+
)
|
93 |
+
button.click(
|
94 |
+
run_generation,
|
95 |
+
[model_id, user_text, top_p, temperature, top_k, max_new_tokens, chatbot, chatbot],
|
96 |
+
[chatbot, chatbot]
|
97 |
)
|
98 |
+
button.click(reset_textbox, [], [user_text])
|
99 |
+
user_text.submit(reset_textbox, [], [user_text])
|
100 |
|
101 |
+
demo.queue().launch()
|
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
torch
|
2 |
-
git+https://github.com/
|
|
|
1 |
torch
|
2 |
+
git+https://github.com/huggingface/transformers.git # transformers from main (TextIteratorStreamer will be added in v4.28)
|