joaogante's picture
joaogante HF staff
visual tweaks
2d2dd9a
raw
history blame
4.01 kB
from threading import Thread
from functools import lru_cache
import torch
import gradio as gr
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM, TextIteratorStreamer
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
@lru_cache(maxsize=1) # only cache the latest model
def get_model_and_tokenizer(model_id):
config = AutoConfig.from_pretrained(model_id)
if config.is_encoder_decoder:
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
else:
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = model.to(torch_device)
return model, tokenizer
def run_generation(model_id, user_text, top_p, temperature, top_k, max_new_tokens, history):
if history is None:
history = []
history.append([user_text, ""])
# Get the model and tokenizer, and tokenize the user text.
model, tokenizer = get_model_and_tokenizer(model_id)
model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread.
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
top_k=top_k
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the chatbot.
for new_text in streamer:
history[-1][1] += new_text
yield history
return history
def reset_textbox():
return gr.update(value='')
with gr.Blocks(
css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}"""
) as demo:
with gr.Column(elem_id="col_container"):
demo_link = "https://huggingface.co/spaces/joaogante/chatbot_transformers_streaming"
gr.Markdown(
f"""
# ๐Ÿค— Transformers Gradio ๐Ÿ”ฅStreaming๐Ÿ”ฅ
This demo showcases how to use the streaming feature of ๐Ÿค— Transformers with Gradio to generate text in real-time.
โš ๏ธ [Duplicate this Space]({demo_link}) if โš ๏ธ
- You want to use a large model (> 1GB). Otherwise, this public space will become slow for others ๐Ÿ’›
- You want to build your own app, using this demo as a template ๐Ÿš€
- You want to bypass the queue and/or add hardware resources ๐Ÿ‘พ
"""
)
model_id = gr.Textbox(value='EleutherAI/pythia-410m', label="๐Ÿค— Hub Model repo")
chatbot = gr.Chatbot(elem_id='chatbot', label="Message history")
user_text = gr.Textbox(placeholder="Is pineapple a pizza topping?", label="Type an input and press Enter")
button = gr.Button(value="Clear message history")
with gr.Accordion("Generation Parameters", open=False):
max_new_tokens = gr.Slider(
minimum=1, maximum=1000, value=100, step=1, interactive=True, label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
)
temperature = gr.Slider(
minimum=0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature (set to 0 for Greedy Decoding)",
)
top_k = gr.Slider(
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
)
user_text.submit(
run_generation,
[model_id, user_text, top_p, temperature, top_k, max_new_tokens, chatbot],
chatbot
)
button.click(reset_textbox, [], [user_text])
demo.queue(max_size=32).launch()