|
|
|
|
|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
|
|
import matplotlib |
|
matplotlib.use("Agg") |
|
import matplotlib.pyplot as plt |
|
|
|
from PIL import Image |
|
import collections |
|
import numpy as np |
|
import pandas as pd |
|
import io |
|
from saac.prompt_generation.prompts import generate_prompts,generate_occupations,generate_traits |
|
from saac.prompt_generation.prompt_utils import score_prompt |
|
from saac.evaluation.eval_utils import generate_countplot, lumia_violinplot, process_analysis, generate_histplot |
|
from datasets import load_dataset |
|
from diffusers import DiffusionPipeline, PNDMScheduler |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
STABLE_MODELS = ["runwayml/stable-diffusion-v1-5", "Midjourney"] |
|
|
|
|
|
scheduler = PNDMScheduler.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="scheduler", prediction_type="v_prediction") |
|
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", scheduler=scheduler) |
|
pipe = pipe.to(device) |
|
|
|
tokenizer = pipe.tokenizer |
|
text_encoder = pipe.text_encoder |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
GENDERS = ["male", "female"] |
|
ETHNICITIES = ["black", "white", "asian"] |
|
LOOKS = list(generate_traits()['tag']) |
|
JOBS = list(generate_occupations()['tag']) |
|
RENDERPREFIX = "a high quality photo of a" |
|
|
|
def echoToken(token): |
|
res = getMostSimilar(tokenizer, text_encoder, token) |
|
return ",".join(res) |
|
|
|
def getEmbeddingForToken(tokenizer, token): |
|
token_ids = tokenizer.encode(token)[1:-1] |
|
if len(token_ids) != 1: |
|
print(len(token_ids)) |
|
raise |
|
token_id = token_ids[0] |
|
return token_id, text_encoder.get_input_embeddings().weight.data[token_id].unsqueeze(0) |
|
|
|
def getMostSimilar(tokenizer, text_encoder, token, numResults=50): |
|
internal_embs = text_encoder.text_model.embeddings.token_embedding.weight |
|
tID, tok = getEmbeddingForToken(tokenizer, token) |
|
|
|
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6) |
|
scores = cos(internal_embs.to("cpu").to(torch.float32), tok.to("cpu").to(torch.float32)) |
|
sorted_scores, sorted_ids = torch.sort(scores, descending=True) |
|
best_ids = sorted_ids[0:numResults].detach().numpy() |
|
best_scores = sorted_scores[0:numResults].detach().numpy() |
|
|
|
res = [] |
|
for best_id, best_score in zip(best_ids, best_scores): |
|
|
|
res.append("[" + tokenizer.decode(best_id) + "," + str(best_score) + "]") |
|
return res[1:] |
|
|
|
def computeTermSimilarity(tokenizer, text_encoder, termA, termB): |
|
inputs = tokenizer([termA, termB], padding=True, return_tensors="pt").to("cpu") |
|
outputs = text_encoder(**inputs) |
|
cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-6) |
|
val = cos(outputs.pooler_output[0], outputs.pooler_output[1]).item() |
|
return float(val) |
|
|
|
def computeJob(tokenizer, text_encoder, job): |
|
res = {} |
|
neutralPrompt = " ".join([RENDERPREFIX, job]) |
|
titleText = neutralPrompt |
|
for gender in GENDERS: |
|
for ethnicity in ETHNICITIES: |
|
prompt = " ".join([RENDERPREFIX, ethnicity, gender, job]) |
|
val = computeTermSimilarity(tokenizer, text_encoder, prompt, neutralPrompt) |
|
res[prompt] = val |
|
|
|
return titleText, sorted(res.items(), reverse=True) |
|
|
|
def computeLook(tokenizer, text_encoder, look): |
|
res = {} |
|
titleText = " ".join([RENDERPREFIX, |
|
look, |
|
"[", |
|
"|".join(GENDERS), |
|
"]"]) |
|
|
|
for gender in GENDERS: |
|
neutralPromptGender = " ".join([RENDERPREFIX, look, gender]) |
|
for ethnicity in ETHNICITIES: |
|
prompt = " ".join([RENDERPREFIX, look, ethnicity, gender]) |
|
val = computeTermSimilarity(tokenizer, text_encoder, prompt, neutralPromptGender) |
|
res[prompt] = val |
|
|
|
return titleText, sorted(res.items(), reverse=True) |
|
|
|
|
|
def fig2img(fig): |
|
"""Convert a Matplotlib figure to a PIL Image and return it""" |
|
buf = io.BytesIO() |
|
fig.savefig(buf) |
|
buf.seek(0) |
|
img = Image.open(buf) |
|
return img |
|
|
|
def computePlot(title, results, scaleXAxis=True): |
|
x = list(map(lambda x:x[0], results)) |
|
y = list(map(lambda x:x[1], results)) |
|
|
|
fig, ax = plt.subplots(1, 1, figsize=(10, 5)) |
|
y_pos = np.arange(len(x)) |
|
|
|
hbars = ax.barh(y_pos, y, left=0, align='center') |
|
ax.set_yticks(y_pos, labels=x) |
|
ax.invert_yaxis() |
|
ax.set_xlabel('Cosine similarity - take care to note compressed X-axis') |
|
ax.set_title('Similarity to "' + title + '"') |
|
|
|
|
|
ax.bar_label(hbars, fmt='%.3f') |
|
minR = np.min(y) |
|
maxR = np.max(y) |
|
diffR = maxR-minR |
|
|
|
if scaleXAxis: |
|
ax.set_xlim(left=minR-0.1*diffR, right=maxR+0.1*diffR) |
|
else: |
|
ax.set_xlim(left=0.0, right=1.0) |
|
plt.tight_layout() |
|
plt.close() |
|
return fig2img(fig) |
|
|
|
def computeJobBias(job): |
|
title, results = computeJob(tokenizer, text_encoder, job) |
|
return computePlot(title, results) |
|
|
|
def computeLookBias(look): |
|
title, results = computeLook(tokenizer, text_encoder, look) |
|
return computePlot(title, results) |
|
def trait_graph(trait,hist=True): |
|
tda_res, occ_result = process_analysis() |
|
fig = None |
|
if not hist: |
|
fig = generate_countplot(tda_res, 'tda_sentiment_val', 'gender_detected_val', |
|
title='Gender Count by Trait Sentiment', |
|
xlabel='Trait Sentiment', |
|
ylabel='Count', |
|
legend_title='Gender') |
|
else: |
|
df = tda_res |
|
df['tda_sentiment_val'] = pd.Categorical(df['tda_sentiment_val'], |
|
['very negative', 'negative', 'neutral', 'positive', 'very positive']) |
|
fig = generate_histplot(tda_res, 'tda_sentiment_val', 'gender_detected_val', |
|
title='Gender Distribution by Trait Sentiment', |
|
xlabel='Trait Sentiment', |
|
ylabel='Count', ) |
|
|
|
fig2 = lumia_violinplot(df = tda_res, |
|
x_col = 'tda_compound', |
|
rgb_col = 'skincolor', |
|
n_bins = 21, |
|
widths_val = 0.05, |
|
points_val = 100, |
|
x_label = 'TDA Sentiment', |
|
y_label = 'Skincolor Intensity', |
|
title = 'Skin Color Intensity, Binned by TDA Sentiment',) |
|
return fig2img(fig),fig2img(fig2) |
|
def occ_graph(occ): |
|
tda_res, occ_result = process_analysis() |
|
fig = generate_histplot(occ_result, 'a_median', 'gender_detected_val', |
|
title='Gender Distribution by Median Annual Salary', |
|
xlabel= 'Median Annual Salary', |
|
ylabel= 'Count',) |
|
fig2 = lumia_violinplot(df=occ_result, x_col='a_median', |
|
rgb_col='skincolor', |
|
n_bins=21, |
|
widths_val=7500.0, |
|
points_val=100, |
|
x_label='Median Salary', |
|
y_label='Skincolor Intensity', |
|
title='Skin Color Intensity, Binned by Median Salary') |
|
return fig2img(fig),fig2img(fig2) |
|
|
|
if __name__=='__main__': |
|
disclaimerString = "" |
|
|
|
jobInterface = gr.Interface(fn=occ_graph, |
|
inputs=[gr.Dropdown(JOBS, label="occupation")], |
|
outputs=['image','image'], |
|
description="Referencing a specific profession comes loaded with associations of gender and ethnicity." |
|
" Text to image models provide an opportunity to explicitly specify an underrepresented group, but first we must understand our default behavior.", |
|
title="How occupation affects txt2img gender and skin color representation", |
|
article = "To view how mentioning a particular occupation affects the gender and skin colors in faces of text to image generators, select a job." |
|
" Promotional materials, advertising, and even criminal sketches which do not explicitly specify a gender or ethnicity term will tend towards the displayed distributions.") |
|
|
|
affectInterface = gr.Interface(fn=trait_graph, |
|
inputs=[gr.Dropdown(LOOKS, label="trait")], |
|
outputs=['image','image'], |
|
description="Certain adjectives can reinforce harmful stereotypes associated with gender roles and ethnic backgrounds." |
|
"Text to image models provide an opportunity to understand how prompting a particular human expression could be triggering," |
|
" or why an uncommon combination might provide important examples to minorities without default representation.", |
|
title="How word sentiment affects txt2img gender and skin color representation", |
|
article = "To view how characterizing a person with a positive, negative, or neutral term influences the gender and skin color composition of AI-generated faces, select a direction.") |
|
|
|
jobInterfaceManual = gr.Interface(fn=score_prompt, |
|
inputs=[gr.inputs.Textbox()], |
|
outputs='text', |
|
description="Analyze prompt", |
|
title="Understand which prompts require further engineering to represent equally genders and skin colors", |
|
article = "Try modifying a trait or occupational prompt to produce a result in the minority representation!") |
|
|
|
|
|
toolInterface = gr.Interface(fn=lambda t: trait_graph(t,hist=False),inputs=[gr.Dropdown(STABLE_MODELS,label="text-to-image model")],outputs='image', |
|
title="How different models fare in gender and skin color representation across a variety of prompts", |
|
description="The training set, vocabulary, pre and post processing of generative AI tools doesn't treat everyone equally. " |
|
"Within a 95% margin of statistical error, the following tests expose bias in gender and skin color.", |
|
article="To learn more about this process, <a href=\"http://github.com/TRSS-Research/SAAC.git\"/> Visit the repo</a>" |
|
) |
|
|
|
gr.TabbedInterface( |
|
[jobInterface, affectInterface, jobInterfaceManual,toolInterface], |
|
["Occupational Bias", "Adjectival Bias", "Prompt analysis",'FACIA model auditing'], |
|
title = "Text-to-Image Bias Explorer" |
|
).launch() |
|
|