Spaces:
Build error
Build error
import modal | |
from fastapi import FastAPI, File, UploadFile, Request | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
from PIL import Image | |
import io | |
import base64 | |
from typing import Optional | |
import traceback | |
# Create app and web app | |
app = modal.App("ui-coordinates-finder") | |
web_app = FastAPI() | |
# Add your model initialization to the app | |
def init_models(): | |
from utils import get_yolo_model, get_caption_model_processor | |
yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') | |
caption_model_processor = get_caption_model_processor( | |
model_name="florence2", | |
model_name_or_path="weights/icon_caption_florence" | |
) | |
return yolo_model, caption_model_processor | |
# Configure CORS | |
web_app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
async def process_image_endpoint( | |
request: Request, | |
file: UploadFile = File(...), | |
box_threshold: float = 0.05, | |
iou_threshold: float = 0.1, | |
screen_width: int = 1920, | |
screen_height: int = 1080 | |
): | |
try: | |
# Add logging for debugging | |
print(f"Processing file: {file.filename}") | |
# Read and process the image | |
contents = await file.read() | |
print("File read successfully") | |
# Save image temporarily | |
image_save_path = '/tmp/saved_image_demo.png' | |
image = Image.open(io.BytesIO(contents)) | |
image.save(image_save_path) | |
# Initialize models | |
yolo_model, caption_model_processor = init_models() | |
# Process with OCR and detection | |
from utils import check_ocr_box, get_som_labeled_img | |
draw_bbox_config = { | |
'text_scale': 0.8, | |
'text_thickness': 2, | |
'text_padding': 2, | |
'thickness': 2, | |
} | |
ocr_bbox_rslt, _ = check_ocr_box( | |
image_save_path, | |
display_img=False, | |
output_bb_format='xyxy', | |
goal_filtering=None, | |
easyocr_args={'paragraph': False, 'text_threshold': 0.9} | |
) | |
text, ocr_bbox = ocr_bbox_rslt | |
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( | |
image_save_path, | |
yolo_model, | |
BOX_TRESHOLD=box_threshold, | |
output_coord_in_ratio=True, | |
ocr_bbox=ocr_bbox, | |
draw_bbox_config=draw_bbox_config, | |
caption_model_processor=caption_model_processor, | |
ocr_text=text, | |
iou_threshold=iou_threshold | |
) | |
# Format the output similar to Gradio demo | |
output_text = [] | |
for i, (element_id, coords) in enumerate(label_coordinates.items()): | |
x, y, w, h = coords | |
# Calculate center points (normalized) | |
center_x_norm = x + (w/2) | |
center_y_norm = y + (h/2) | |
# Calculate screen coordinates | |
screen_x = int(center_x_norm * screen_width) | |
screen_y = int(center_y_norm * screen_height) | |
screen_w = int(w * screen_width) | |
screen_h = int(h * screen_height) | |
if i < len(parsed_content_list): | |
element_desc = parsed_content_list[i] | |
output_text.append({ | |
"description": element_desc, | |
"normalized_coords": (center_x_norm, center_y_norm), | |
"screen_coords": (screen_x, screen_y), | |
"dimensions": (screen_w, screen_h) | |
}) | |
return JSONResponse( | |
status_code=200, | |
content={ | |
"message": "Success", | |
"filename": file.filename, | |
"processed_image": dino_labled_img, # Base64 encoded image | |
"elements": output_text | |
} | |
) | |
except Exception as e: | |
error_details = traceback.format_exc() | |
print(f"Error processing request: {error_details}") | |
return JSONResponse( | |
status_code=500, | |
content={ | |
"error": str(e), | |
"details": error_details | |
} | |
) | |
def fastapi_app(): | |
return web_app | |
if __name__ == "__main__": | |
app.serve() |