ui-coordinates-finder / gradio_demo.py
zorba111's picture
Upload folder using huggingface_hub
2ad48f3 verified
from typing import Optional
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
import torch
from PIL import Image
yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
platform = 'pc'
if platform == 'pc':
draw_bbox_config = {
'text_scale': 0.8,
'text_thickness': 2,
'text_padding': 2,
'thickness': 2,
}
elif platform == 'web':
draw_bbox_config = {
'text_scale': 0.8,
'text_thickness': 2,
'text_padding': 3,
'thickness': 3,
}
elif platform == 'mobile':
draw_bbox_config = {
'text_scale': 0.8,
'text_thickness': 2,
'text_padding': 3,
'thickness': 3,
}
MARKDOWN = """
# OmniParser for Pure Vision Based General GUI Agent 🔥
<div>
<a href="https://arxiv.org/pdf/2408.00203">
<img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;">
</a>
</div>
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
"""
DEVICE = torch.device('cuda')
# @spaces.GPU
# @torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
image_input,
box_threshold,
iou_threshold,
screen_width,
screen_height
) -> Optional[Image.Image]:
"""
Process the image and return both normalized and screen coordinates
Args:
image_input: Input image
box_threshold: Confidence threshold for box detection
iou_threshold: IOU threshold for overlap detection
screen_width: Actual screen width in pixels
screen_height: Actual screen height in pixels
"""
image_save_path = 'imgs/saved_image_demo.png'
image_input.save(image_save_path)
# Get image dimensions
image_width = image_input.width
image_height = image_input.height
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img=False, output_bb_format='xyxy',
goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
text, ocr_bbox = ocr_bbox_rslt
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
image_save_path, yolo_model, BOX_TRESHOLD=box_threshold,
output_coord_in_ratio=True, ocr_bbox=ocr_bbox,
draw_bbox_config=draw_bbox_config,
caption_model_processor=caption_model_processor,
ocr_text=text, iou_threshold=iou_threshold
)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
# Format the output to include both normalized and screen coordinates
output_text = []
for i, (element_id, coords) in enumerate(label_coordinates.items()):
x, y, w, h = coords
# Calculate center points (normalized)
center_x_norm = x + (w/2)
center_y_norm = y + (h/2)
# Calculate screen coordinates
screen_x = int(center_x_norm * screen_width)
screen_y = int(center_y_norm * screen_height)
# Calculate element dimensions on screen
screen_w = int(w * screen_width)
screen_h = int(h * screen_height)
if i < len(parsed_content_list):
# For text elements
element_desc = parsed_content_list[i]
output_text.append(
f"{element_desc}\n"
f" Normalized coordinates: ({center_x_norm:.3f}, {center_y_norm:.3f})\n"
f" Screen coordinates: ({screen_x}, {screen_y})\n"
f" Dimensions: {screen_w}x{screen_h} pixels"
)
else:
# For icon elements without text
output_text.append(
f"Icon {i}\n"
f" Normalized coordinates: ({center_x_norm:.3f}, {center_y_norm:.3f})\n"
f" Screen coordinates: ({screen_x}, {screen_y})\n"
f" Dimensions: {screen_w}x{screen_h} pixels"
)
parsed_content = '\n\n'.join(output_text)
return image, parsed_content
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
with gr.Row():
# Screen dimension inputs
screen_width_component = gr.Number(
label='Screen Width (pixels)',
value=1920, # Default value
precision=0
)
screen_height_component = gr.Number(
label='Screen Height (pixels)',
value=1080, # Default value
precision=0
)
# Threshold sliders
box_threshold_component = gr.Slider(
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
iou_threshold_component = gr.Slider(
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
text_output_component = gr.Textbox(
label='Parsed screen elements',
placeholder='Text Output',
lines=10 # Increased to show more content
)
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
screen_width_component,
screen_height_component
],
outputs=[image_output_component, text_output_component]
)
# demo.launch(debug=False, show_error=True, share=True)
demo.launch(share=True, server_port=7861, server_name='0.0.0.0')