Spaces:
Build error
Build error
| from typing import Optional | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| import io | |
| import base64, os | |
| from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img | |
| import torch | |
| from PIL import Image | |
| yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt') | |
| caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence") | |
| platform = 'pc' | |
| if platform == 'pc': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 2, | |
| 'thickness': 2, | |
| } | |
| elif platform == 'web': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 3, | |
| 'thickness': 3, | |
| } | |
| elif platform == 'mobile': | |
| draw_bbox_config = { | |
| 'text_scale': 0.8, | |
| 'text_thickness': 2, | |
| 'text_padding': 3, | |
| 'thickness': 3, | |
| } | |
| MARKDOWN = """ | |
| # OmniParser for Pure Vision Based General GUI Agent 🔥 | |
| <div> | |
| <a href="https://arxiv.org/pdf/2408.00203"> | |
| <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;"> | |
| </a> | |
| </div> | |
| OmniParser is a screen parsing tool to convert general GUI screen to structured elements. | |
| """ | |
| DEVICE = torch.device('cuda') | |
| # @spaces.GPU | |
| # @torch.inference_mode() | |
| # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) | |
| def process( | |
| image_input, | |
| box_threshold, | |
| iou_threshold, | |
| screen_width, | |
| screen_height | |
| ) -> Optional[Image.Image]: | |
| """ | |
| Process the image and return both normalized and screen coordinates | |
| Args: | |
| image_input: Input image | |
| box_threshold: Confidence threshold for box detection | |
| iou_threshold: IOU threshold for overlap detection | |
| screen_width: Actual screen width in pixels | |
| screen_height: Actual screen height in pixels | |
| """ | |
| image_save_path = 'imgs/saved_image_demo.png' | |
| image_input.save(image_save_path) | |
| # Get image dimensions | |
| image_width = image_input.width | |
| image_height = image_input.height | |
| ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_save_path, display_img=False, output_bb_format='xyxy', | |
| goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9}) | |
| text, ocr_bbox = ocr_bbox_rslt | |
| dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( | |
| image_save_path, yolo_model, BOX_TRESHOLD=box_threshold, | |
| output_coord_in_ratio=True, ocr_bbox=ocr_bbox, | |
| draw_bbox_config=draw_bbox_config, | |
| caption_model_processor=caption_model_processor, | |
| ocr_text=text, iou_threshold=iou_threshold | |
| ) | |
| image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) | |
| # Format the output to include both normalized and screen coordinates | |
| output_text = [] | |
| for i, (element_id, coords) in enumerate(label_coordinates.items()): | |
| x, y, w, h = coords | |
| # Calculate center points (normalized) | |
| center_x_norm = x + (w/2) | |
| center_y_norm = y + (h/2) | |
| # Calculate screen coordinates | |
| screen_x = int(center_x_norm * screen_width) | |
| screen_y = int(center_y_norm * screen_height) | |
| # Calculate element dimensions on screen | |
| screen_w = int(w * screen_width) | |
| screen_h = int(h * screen_height) | |
| if i < len(parsed_content_list): | |
| # For text elements | |
| element_desc = parsed_content_list[i] | |
| output_text.append( | |
| f"{element_desc}\n" | |
| f" Normalized coordinates: ({center_x_norm:.3f}, {center_y_norm:.3f})\n" | |
| f" Screen coordinates: ({screen_x}, {screen_y})\n" | |
| f" Dimensions: {screen_w}x{screen_h} pixels" | |
| ) | |
| else: | |
| # For icon elements without text | |
| output_text.append( | |
| f"Icon {i}\n" | |
| f" Normalized coordinates: ({center_x_norm:.3f}, {center_y_norm:.3f})\n" | |
| f" Screen coordinates: ({screen_x}, {screen_y})\n" | |
| f" Dimensions: {screen_w}x{screen_h} pixels" | |
| ) | |
| parsed_content = '\n\n'.join(output_text) | |
| return image, parsed_content | |
| with gr.Blocks() as demo: | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input_component = gr.Image( | |
| type='pil', label='Upload image') | |
| with gr.Row(): | |
| # Screen dimension inputs | |
| screen_width_component = gr.Number( | |
| label='Screen Width (pixels)', | |
| value=1920, # Default value | |
| precision=0 | |
| ) | |
| screen_height_component = gr.Number( | |
| label='Screen Height (pixels)', | |
| value=1080, # Default value | |
| precision=0 | |
| ) | |
| # Threshold sliders | |
| box_threshold_component = gr.Slider( | |
| label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05) | |
| iou_threshold_component = gr.Slider( | |
| label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1) | |
| submit_button_component = gr.Button( | |
| value='Submit', variant='primary') | |
| with gr.Column(): | |
| image_output_component = gr.Image(type='pil', label='Image Output') | |
| text_output_component = gr.Textbox( | |
| label='Parsed screen elements', | |
| placeholder='Text Output', | |
| lines=10 # Increased to show more content | |
| ) | |
| submit_button_component.click( | |
| fn=process, | |
| inputs=[ | |
| image_input_component, | |
| box_threshold_component, | |
| iou_threshold_component, | |
| screen_width_component, | |
| screen_height_component | |
| ], | |
| outputs=[image_output_component, text_output_component] | |
| ) | |
| # demo.launch(debug=False, show_error=True, share=True) | |
| demo.launch(share=True, server_port=7861, server_name='0.0.0.0') | |