zonova commited on
Commit
ee9627b
1 Parent(s): 0ebcec0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -4,9 +4,6 @@ import pandas as pd
4
  import numpy as np
5
 
6
 
7
- def greet(name):
8
- return "Hello " + name + "!!"
9
-
10
  def predicter(SpO2, Age, Weight, Height, Temperature, Gender, Race):
11
  xgb_reg = xgboost.XGBClassifier(tree_method = 'approx',
12
  enable_categorical = True,
@@ -28,14 +25,16 @@ def predicter(SpO2, Age, Weight, Height, Temperature, Gender, Race):
28
 
29
  user_input = pd.DataFrame([[SpO2/100,Age/91,Weight/309,Height/213,Temperature/42.06,gen,Race]],columns = cont_features+cat_features)
30
  user_input[cat_features] = user_input[cat_features].copy().astype('category')
31
- pred = xgb_reg.predict(user_input)
32
 
33
- return pred
 
34
 
35
 
36
  demo = gr.Interface(
37
  fn=predicter,
38
  inputs=[gr.Slider(0, 100),"number",gr.inputs.Number(label = "Weight in kg"),gr.inputs.Number(label = "Height in cm"),gr.inputs.Number(label = "Temperature in Celcius"),gr.Radio(["Male", "Female"]),gr.Radio(["White", "Black", "Asian", "Hispanic", "Other"])],
39
- outputs=["text"],
 
40
  )
41
  demo.launch()
 
4
  import numpy as np
5
 
6
 
 
 
 
7
  def predicter(SpO2, Age, Weight, Height, Temperature, Gender, Race):
8
  xgb_reg = xgboost.XGBClassifier(tree_method = 'approx',
9
  enable_categorical = True,
 
25
 
26
  user_input = pd.DataFrame([[SpO2/100,Age/91,Weight/309,Height/213,Temperature/42.06,gen,Race]],columns = cont_features+cat_features)
27
  user_input[cat_features] = user_input[cat_features].copy().astype('category')
28
+ pred = xgb_reg.predict_proba(user_input)
29
 
30
+ return return {"Probability of Not Being Hidden Hypoxemic": pred[0][0],
31
+ "Probability of Having Hidden Hypoxemia": pred[0][1], }
32
 
33
 
34
  demo = gr.Interface(
35
  fn=predicter,
36
  inputs=[gr.Slider(0, 100),"number",gr.inputs.Number(label = "Weight in kg"),gr.inputs.Number(label = "Height in cm"),gr.inputs.Number(label = "Temperature in Celcius"),gr.Radio(["Male", "Female"]),gr.Radio(["White", "Black", "Asian", "Hispanic", "Other"])],
37
+ outputs=gr.outputs.Label(num_top_classes=2),
38
+ title = "Probability of Hidden Hypoxemia"
39
  )
40
  demo.launch()