zongxiao's picture
Update app.py
69c7afe
raw
history blame
3.18 kB
import torch
import numpy as np
from transformers import pipeline
from transformers import BarkModel
from transformers import AutoProcessor
device="cpu"
pipe = pipeline(
"automatic-speech-recognition", model="openai/whisper-large-v2", device=device
)
processor = AutoProcessor.from_pretrained("suno/bark")
model = BarkModel.from_pretrained("suno/bark")
model = model.to(device)
synthesised_rate = model.generation_config.sample_rate
def translate(audio):
outputs = pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe","language":"chinese"})
return outputs["text"]
def synthesise(text_prompt,voice_preset="v2/zh_speaker_1"):
inputs = processor(text_prompt, voice_preset=voice_preset)
speech_output = model.generate(**inputs.to(device),pad_token_id=10000)
return speech_output
def speech_to_speech_translation(audio,voice_preset="v2/zh_speaker_1"):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text,voice_preset)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return synthesised_rate , synthesised_speech ,translated_text
def speech_to_speech_translation_fix(audio,voice_preset="v2/zh_speaker_1"):
synthesised_rate,synthesised_speech,translated_text = speech_to_speech_translation(audio,voice_preset)
return (synthesised_rate,synthesised_speech.T),translated_text
title = "Multilanguage to Chinese(mandarin) Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in Multilanguage to target speech in Chinese(mandarin). Demo uses OpenAI's [Whisper arge-v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and a suno/bark[bark-small](https://huggingface.co/suno/bark) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
examples = [
["./cs-CZ.mp3", None],
["./de-DE.mp3", None],
["./en-AU.mp3", None],
["./en-GB.mp3", None],
["./en-US.mp3", None],
["./es-ES.mp3", None],
["./fr-FR.mp3", None],
["./it-IT.mp3", None],
["./ko-KR.mp3", None],
["./nl-NL.mp3", None],
["./pl-PL.mp3", None],
["./pt-PT.mp3", None],
["./ru-RU.mp3", None],
]
import gradio as gr
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
gr.Text(label="Transcription"),
],
title=title,
description=description,
examples=examples,
)
mic_transcribe = gr.Interface(
fn=speech_to_speech_translation_fix,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
gr.Text(label="Transcription"),
],
title=title,
description=description,
)
with demo:
gr.TabbedInterface(
[file_transcribe, mic_transcribe],
["Transcribe Audio File", "Transcribe Microphone"],
)
demo.launch(share=True)