Spaces:
Running
Running
SayaSS
commited on
Commit
·
693a136
1
Parent(s):
cf0491a
remove unnecessary files
Browse files- .pre-commit-config.yaml +0 -25
- 1.4.3 +0 -0
- README.md +1 -1
- bert/chinese-roberta-wwm-ext-large/.gitattributes +0 -9
- bert/chinese-roberta-wwm-ext-large/.gitignore +0 -1
- bert/chinese-roberta-wwm-ext-large/README.md +0 -57
- bert/chinese-roberta-wwm-ext-large/added_tokens.json +0 -1
- bert/chinese-roberta-wwm-ext-large/config.json +0 -28
- bert/chinese-roberta-wwm-ext-large/special_tokens_map.json +0 -1
- bert/chinese-roberta-wwm-ext-large/tokenizer.json +0 -0
- bert/chinese-roberta-wwm-ext-large/tokenizer_config.json +0 -1
- bert/chinese-roberta-wwm-ext-large/vocab.txt +0 -0
- bert_gen.py +0 -61
- configs/config.json +0 -197
- data_utils.py +0 -406
- generation_logs.txt +0 -0
- losses.py +0 -58
- preprocess_text.py +0 -107
- resample.py +0 -48
- train_ms.py +0 -596
- train_ms_acc.py +0 -623
.pre-commit-config.yaml
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
repos:
|
2 |
-
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
-
rev: v4.4.0
|
4 |
-
hooks:
|
5 |
-
- id: check-yaml
|
6 |
-
- id: end-of-file-fixer
|
7 |
-
- id: trailing-whitespace
|
8 |
-
|
9 |
-
- repo: https://github.com/astral-sh/ruff-pre-commit
|
10 |
-
rev: v0.0.292
|
11 |
-
hooks:
|
12 |
-
- id: ruff
|
13 |
-
args: [ --fix ]
|
14 |
-
|
15 |
-
- repo: https://github.com/psf/black
|
16 |
-
rev: 23.9.1
|
17 |
-
hooks:
|
18 |
-
- id: black
|
19 |
-
|
20 |
-
- repo: https://github.com/codespell-project/codespell
|
21 |
-
rev: v2.2.6
|
22 |
-
hooks:
|
23 |
-
- id: codespell
|
24 |
-
files: ^.*\.(py|md|rst|yml)$
|
25 |
-
args: [-L=fro]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.4.3
DELETED
Binary file (330 Bytes)
|
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Bert Vits2
|
3 |
emoji: 📊
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
|
|
1 |
---
|
2 |
+
title: Bert Vits2 JP
|
3 |
emoji: 📊
|
4 |
colorFrom: red
|
5 |
colorTo: green
|
bert/chinese-roberta-wwm-ext-large/.gitattributes
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bert/chinese-roberta-wwm-ext-large/.gitignore
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
*.bin
|
|
|
|
bert/chinese-roberta-wwm-ext-large/README.md
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- zh
|
4 |
-
tags:
|
5 |
-
- bert
|
6 |
-
license: "apache-2.0"
|
7 |
-
---
|
8 |
-
|
9 |
-
# Please use 'Bert' related functions to load this model!
|
10 |
-
|
11 |
-
## Chinese BERT with Whole Word Masking
|
12 |
-
For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
|
13 |
-
|
14 |
-
**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
|
15 |
-
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
|
16 |
-
|
17 |
-
This repository is developed based on:https://github.com/google-research/bert
|
18 |
-
|
19 |
-
You may also interested in,
|
20 |
-
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
|
21 |
-
- Chinese MacBERT: https://github.com/ymcui/MacBERT
|
22 |
-
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
|
23 |
-
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
|
24 |
-
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
|
25 |
-
|
26 |
-
More resources by HFL: https://github.com/ymcui/HFL-Anthology
|
27 |
-
|
28 |
-
## Citation
|
29 |
-
If you find the technical report or resource is useful, please cite the following technical report in your paper.
|
30 |
-
- Primary: https://arxiv.org/abs/2004.13922
|
31 |
-
```
|
32 |
-
@inproceedings{cui-etal-2020-revisiting,
|
33 |
-
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
|
34 |
-
author = "Cui, Yiming and
|
35 |
-
Che, Wanxiang and
|
36 |
-
Liu, Ting and
|
37 |
-
Qin, Bing and
|
38 |
-
Wang, Shijin and
|
39 |
-
Hu, Guoping",
|
40 |
-
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
|
41 |
-
month = nov,
|
42 |
-
year = "2020",
|
43 |
-
address = "Online",
|
44 |
-
publisher = "Association for Computational Linguistics",
|
45 |
-
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
|
46 |
-
pages = "657--668",
|
47 |
-
}
|
48 |
-
```
|
49 |
-
- Secondary: https://arxiv.org/abs/1906.08101
|
50 |
-
```
|
51 |
-
@article{chinese-bert-wwm,
|
52 |
-
title={Pre-Training with Whole Word Masking for Chinese BERT},
|
53 |
-
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
|
54 |
-
journal={arXiv preprint arXiv:1906.08101},
|
55 |
-
year={2019}
|
56 |
-
}
|
57 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bert/chinese-roberta-wwm-ext-large/added_tokens.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{}
|
|
|
|
bert/chinese-roberta-wwm-ext-large/config.json
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"architectures": [
|
3 |
-
"BertForMaskedLM"
|
4 |
-
],
|
5 |
-
"attention_probs_dropout_prob": 0.1,
|
6 |
-
"bos_token_id": 0,
|
7 |
-
"directionality": "bidi",
|
8 |
-
"eos_token_id": 2,
|
9 |
-
"hidden_act": "gelu",
|
10 |
-
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size": 1024,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 4096,
|
14 |
-
"layer_norm_eps": 1e-12,
|
15 |
-
"max_position_embeddings": 512,
|
16 |
-
"model_type": "bert",
|
17 |
-
"num_attention_heads": 16,
|
18 |
-
"num_hidden_layers": 24,
|
19 |
-
"output_past": true,
|
20 |
-
"pad_token_id": 0,
|
21 |
-
"pooler_fc_size": 768,
|
22 |
-
"pooler_num_attention_heads": 12,
|
23 |
-
"pooler_num_fc_layers": 3,
|
24 |
-
"pooler_size_per_head": 128,
|
25 |
-
"pooler_type": "first_token_transform",
|
26 |
-
"type_vocab_size": 2,
|
27 |
-
"vocab_size": 21128
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bert/chinese-roberta-wwm-ext-large/special_tokens_map.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
|
|
|
bert/chinese-roberta-wwm-ext-large/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
bert/chinese-roberta-wwm-ext-large/tokenizer_config.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"init_inputs": []}
|
|
|
|
bert/chinese-roberta-wwm-ext-large/vocab.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
bert_gen.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from multiprocessing import Pool
|
3 |
-
import commons
|
4 |
-
import utils
|
5 |
-
from tqdm import tqdm
|
6 |
-
from text import cleaned_text_to_sequence, get_bert
|
7 |
-
import argparse
|
8 |
-
import torch.multiprocessing as mp
|
9 |
-
|
10 |
-
import os
|
11 |
-
os.environ['http_proxy'] = 'http://localhost:11796'
|
12 |
-
os.environ['https_proxy'] = 'http://localhost:11796'
|
13 |
-
def process_line(line):
|
14 |
-
rank = mp.current_process()._identity
|
15 |
-
rank = rank[0] if len(rank) > 0 else 0
|
16 |
-
if torch.cuda.is_available():
|
17 |
-
gpu_id = rank % torch.cuda.device_count()
|
18 |
-
device = torch.device(f"cuda:{gpu_id}")
|
19 |
-
wav_path, _, language_str, text, phones, tone, word2ph = line.strip().split("|")
|
20 |
-
phone = phones.split(" ")
|
21 |
-
tone = [int(i) for i in tone.split(" ")]
|
22 |
-
word2ph = [int(i) for i in word2ph.split(" ")]
|
23 |
-
word2ph = [i for i in word2ph]
|
24 |
-
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
25 |
-
|
26 |
-
phone = commons.intersperse(phone, 0)
|
27 |
-
tone = commons.intersperse(tone, 0)
|
28 |
-
language = commons.intersperse(language, 0)
|
29 |
-
for i in range(len(word2ph)):
|
30 |
-
word2ph[i] = word2ph[i] * 2
|
31 |
-
word2ph[0] += 1
|
32 |
-
|
33 |
-
bert_path = wav_path.replace(".wav", ".bert.pt")
|
34 |
-
|
35 |
-
try:
|
36 |
-
bert = torch.load(bert_path)
|
37 |
-
assert bert.shape[-1] == len(phone)
|
38 |
-
except Exception:
|
39 |
-
bert = get_bert(text, word2ph, language_str, device)
|
40 |
-
assert bert.shape[-1] == len(phone)
|
41 |
-
torch.save(bert, bert_path)
|
42 |
-
|
43 |
-
|
44 |
-
if __name__ == "__main__":
|
45 |
-
parser = argparse.ArgumentParser()
|
46 |
-
parser.add_argument("-c", "--config", type=str, default="configs/config.json")
|
47 |
-
parser.add_argument("--num_processes", type=int, default=2)
|
48 |
-
args = parser.parse_args()
|
49 |
-
config_path = args.config
|
50 |
-
hps = utils.get_hparams_from_file(config_path)
|
51 |
-
lines = []
|
52 |
-
with open(hps.data.training_files, encoding="utf-8") as f:
|
53 |
-
lines.extend(f.readlines())
|
54 |
-
|
55 |
-
with open(hps.data.validation_files, encoding="utf-8") as f:
|
56 |
-
lines.extend(f.readlines())
|
57 |
-
|
58 |
-
num_processes = args.num_processes
|
59 |
-
with Pool(processes=num_processes) as pool:
|
60 |
-
for _ in tqdm(pool.imap_unordered(process_line, lines), total=len(lines)):
|
61 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/config.json
DELETED
@@ -1,197 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"train": {
|
3 |
-
"log_interval": 20,
|
4 |
-
"eval_interval": 500,
|
5 |
-
"seed": 52,
|
6 |
-
"epochs": 10000,
|
7 |
-
"learning_rate": 0.0001,
|
8 |
-
"betas": [
|
9 |
-
0.8,
|
10 |
-
0.99
|
11 |
-
],
|
12 |
-
"eps": 1e-09,
|
13 |
-
"batch_size": 4,
|
14 |
-
"fp16_run": false,
|
15 |
-
"lr_decay": 0.999875,
|
16 |
-
"segment_size": 16384,
|
17 |
-
"init_lr_ratio": 1,
|
18 |
-
"warmup_epochs": 0,
|
19 |
-
"c_mel": 45,
|
20 |
-
"c_kl": 1.0,
|
21 |
-
"skip_optimizer": true
|
22 |
-
},
|
23 |
-
"data": {
|
24 |
-
"training_files": "filelists/train.list",
|
25 |
-
"validation_files": "filelists/val.list",
|
26 |
-
"max_wav_value": 32768.0,
|
27 |
-
"sampling_rate": 44100,
|
28 |
-
"filter_length": 2048,
|
29 |
-
"hop_length": 512,
|
30 |
-
"win_length": 2048,
|
31 |
-
"n_mel_channels": 128,
|
32 |
-
"mel_fmin": 0.0,
|
33 |
-
"mel_fmax": null,
|
34 |
-
"add_blank": true,
|
35 |
-
"n_speakers": 256,
|
36 |
-
"cleaned_text": true,
|
37 |
-
"spk2id": {
|
38 |
-
"特别周": 0,
|
39 |
-
"无声铃鹿": 1,
|
40 |
-
"丸善斯基": 2,
|
41 |
-
"富士奇迹": 3,
|
42 |
-
"东海帝皇": 4,
|
43 |
-
"小栗帽": 5,
|
44 |
-
"黄金船": 6,
|
45 |
-
"伏特加": 7,
|
46 |
-
"大和赤骥": 8,
|
47 |
-
"菱亚马逊": 9,
|
48 |
-
"草上飞": 10,
|
49 |
-
"大树快车": 11,
|
50 |
-
"目白麦昆": 12,
|
51 |
-
"神鹰": 13,
|
52 |
-
"鲁道夫象征": 14,
|
53 |
-
"好歌剧": 15,
|
54 |
-
"成田白仁": 16,
|
55 |
-
"爱丽数码": 17,
|
56 |
-
"美妙姿势": 18,
|
57 |
-
"摩耶重炮": 19,
|
58 |
-
"玉藻十字": 20,
|
59 |
-
"琵琶晨光": 21,
|
60 |
-
"目白赖恩": 22,
|
61 |
-
"美浦波旁": 23,
|
62 |
-
"雪中美人": 24,
|
63 |
-
"米浴": 25,
|
64 |
-
"爱丽速子": 26,
|
65 |
-
"爱慕织姬": 27,
|
66 |
-
"曼城茶座": 28,
|
67 |
-
"气槽": 29,
|
68 |
-
"星云天空": 30,
|
69 |
-
"菱曙": 31,
|
70 |
-
"艾尼斯风神": 32,
|
71 |
-
"稻荷一": 33,
|
72 |
-
"空中神宫": 34,
|
73 |
-
"川上公主": 35,
|
74 |
-
"黄金城": 36,
|
75 |
-
"真机伶": 37,
|
76 |
-
"荣进闪耀": 38,
|
77 |
-
"采珠": 39,
|
78 |
-
"新光风": 40,
|
79 |
-
"超级小海湾": 41,
|
80 |
-
"荒漠英雄": 42,
|
81 |
-
"东瀛佐敦": 43,
|
82 |
-
"中山庆典": 44,
|
83 |
-
"成田大进": 45,
|
84 |
-
"西野花": 46,
|
85 |
-
"醒目飞鹰": 47,
|
86 |
-
"春乌拉拉": 48,
|
87 |
-
"青竹回忆": 49,
|
88 |
-
"待兼福来": 50,
|
89 |
-
"Mr CB": 51,
|
90 |
-
"美丽周日": 52,
|
91 |
-
"名将怒涛": 53,
|
92 |
-
"帝王光辉": 54,
|
93 |
-
"待兼诗歌剧": 55,
|
94 |
-
"生野狄杜斯": 56,
|
95 |
-
"优秀素质": 57,
|
96 |
-
"双涡轮": 58,
|
97 |
-
"目白多伯": 59,
|
98 |
-
"目白善信": 60,
|
99 |
-
"大拓太阳神": 61,
|
100 |
-
"北部玄驹": 62,
|
101 |
-
"目白阿尔丹": 63,
|
102 |
-
"八重无敌": 64,
|
103 |
-
"里见光钻": 65,
|
104 |
-
"天狼星象征": 66,
|
105 |
-
"樱花桂冠": 67,
|
106 |
-
"成田路": 68,
|
107 |
-
"也文摄辉": 69,
|
108 |
-
"吉兆": 70,
|
109 |
-
"鹤丸刚志": 71,
|
110 |
-
"谷野美酒": 72,
|
111 |
-
"第一红宝石": 73,
|
112 |
-
"目白高峰": 74,
|
113 |
-
"真弓快车": 75,
|
114 |
-
"里见皇冠": 76,
|
115 |
-
"高尚骏逸": 77,
|
116 |
-
"凯斯奇迹": 78,
|
117 |
-
"森林宝穴": 79,
|
118 |
-
"小林力奇": 80,
|
119 |
-
"奇瑞骏": 81,
|
120 |
-
"葛城王牌": 82,
|
121 |
-
"新宇宙": 83,
|
122 |
-
"菱钻奇宝": 84,
|
123 |
-
"望族": 85,
|
124 |
-
"骏川手纲": 86,
|
125 |
-
"秋川弥生": 87,
|
126 |
-
"乙名史悦子": 88,
|
127 |
-
"桐生院葵": 89,
|
128 |
-
"安心泽刺刺美": 90,
|
129 |
-
"达利阿拉伯": 91,
|
130 |
-
"高多芬柏布": 92,
|
131 |
-
"佐岳五月": 93,
|
132 |
-
"胜利奖券": 94,
|
133 |
-
"樱花进王": 95,
|
134 |
-
"东商变革": 96,
|
135 |
-
"微光飞驹": 97,
|
136 |
-
"樱花千代王": 98,
|
137 |
-
"跳舞城": 99,
|
138 |
-
"樫本理子": 100,
|
139 |
-
"明亮圣辉": 101,
|
140 |
-
"拜耶土耳其": 102
|
141 |
-
}
|
142 |
-
},
|
143 |
-
"model": {
|
144 |
-
"use_spk_conditioned_encoder": true,
|
145 |
-
"use_noise_scaled_mas": true,
|
146 |
-
"use_mel_posterior_encoder": false,
|
147 |
-
"use_duration_discriminator": true,
|
148 |
-
"inter_channels": 192,
|
149 |
-
"hidden_channels": 192,
|
150 |
-
"filter_channels": 768,
|
151 |
-
"n_heads": 2,
|
152 |
-
"n_layers": 6,
|
153 |
-
"kernel_size": 3,
|
154 |
-
"p_dropout": 0.1,
|
155 |
-
"resblock": "1",
|
156 |
-
"resblock_kernel_sizes": [
|
157 |
-
3,
|
158 |
-
7,
|
159 |
-
11
|
160 |
-
],
|
161 |
-
"resblock_dilation_sizes": [
|
162 |
-
[
|
163 |
-
1,
|
164 |
-
3,
|
165 |
-
5
|
166 |
-
],
|
167 |
-
[
|
168 |
-
1,
|
169 |
-
3,
|
170 |
-
5
|
171 |
-
],
|
172 |
-
[
|
173 |
-
1,
|
174 |
-
3,
|
175 |
-
5
|
176 |
-
]
|
177 |
-
],
|
178 |
-
"upsample_rates": [
|
179 |
-
8,
|
180 |
-
8,
|
181 |
-
2,
|
182 |
-
2,
|
183 |
-
2
|
184 |
-
],
|
185 |
-
"upsample_initial_channel": 512,
|
186 |
-
"upsample_kernel_sizes": [
|
187 |
-
16,
|
188 |
-
16,
|
189 |
-
8,
|
190 |
-
2,
|
191 |
-
2
|
192 |
-
],
|
193 |
-
"n_layers_q": 3,
|
194 |
-
"use_spectral_norm": false,
|
195 |
-
"gin_channels": 256
|
196 |
-
}
|
197 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_utils.py
DELETED
@@ -1,406 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import torch
|
4 |
-
import torch.utils.data
|
5 |
-
from tqdm import tqdm
|
6 |
-
from loguru import logger
|
7 |
-
import commons
|
8 |
-
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
9 |
-
from utils import load_wav_to_torch, load_filepaths_and_text
|
10 |
-
from text import cleaned_text_to_sequence, get_bert
|
11 |
-
|
12 |
-
"""Multi speaker version"""
|
13 |
-
|
14 |
-
|
15 |
-
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
16 |
-
"""
|
17 |
-
1) loads audio, speaker_id, text pairs
|
18 |
-
2) normalizes text and converts them to sequences of integers
|
19 |
-
3) computes spectrograms from audio files.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(self, audiopaths_sid_text, hparams):
|
23 |
-
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
24 |
-
self.max_wav_value = hparams.max_wav_value
|
25 |
-
self.sampling_rate = hparams.sampling_rate
|
26 |
-
self.filter_length = hparams.filter_length
|
27 |
-
self.hop_length = hparams.hop_length
|
28 |
-
self.win_length = hparams.win_length
|
29 |
-
self.sampling_rate = hparams.sampling_rate
|
30 |
-
self.spk_map = hparams.spk2id
|
31 |
-
self.hparams = hparams
|
32 |
-
|
33 |
-
self.use_mel_spec_posterior = getattr(
|
34 |
-
hparams, "use_mel_posterior_encoder", False
|
35 |
-
)
|
36 |
-
if self.use_mel_spec_posterior:
|
37 |
-
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
38 |
-
|
39 |
-
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
40 |
-
|
41 |
-
self.add_blank = hparams.add_blank
|
42 |
-
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
43 |
-
self.max_text_len = getattr(hparams, "max_text_len", 300)
|
44 |
-
|
45 |
-
random.seed(1234)
|
46 |
-
random.shuffle(self.audiopaths_sid_text)
|
47 |
-
self._filter()
|
48 |
-
|
49 |
-
def _filter(self):
|
50 |
-
"""
|
51 |
-
Filter text & store spec lengths
|
52 |
-
"""
|
53 |
-
# Store spectrogram lengths for Bucketing
|
54 |
-
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
55 |
-
# spec_length = wav_length // hop_length
|
56 |
-
|
57 |
-
audiopaths_sid_text_new = []
|
58 |
-
lengths = []
|
59 |
-
skipped = 0
|
60 |
-
logger.info("Init dataset...")
|
61 |
-
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
62 |
-
self.audiopaths_sid_text
|
63 |
-
):
|
64 |
-
audiopath = f"{_id}"
|
65 |
-
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
66 |
-
phones = phones.split(" ")
|
67 |
-
tone = [int(i) for i in tone.split(" ")]
|
68 |
-
word2ph = [int(i) for i in word2ph.split(" ")]
|
69 |
-
audiopaths_sid_text_new.append(
|
70 |
-
[audiopath, spk, language, text, phones, tone, word2ph]
|
71 |
-
)
|
72 |
-
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
73 |
-
else:
|
74 |
-
skipped += 1
|
75 |
-
logger.info(
|
76 |
-
"skipped: "
|
77 |
-
+ str(skipped)
|
78 |
-
+ ", total: "
|
79 |
-
+ str(len(self.audiopaths_sid_text))
|
80 |
-
)
|
81 |
-
self.audiopaths_sid_text = audiopaths_sid_text_new
|
82 |
-
self.lengths = lengths
|
83 |
-
|
84 |
-
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
85 |
-
# separate filename, speaker_id and text
|
86 |
-
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
87 |
-
|
88 |
-
bert, ja_bert, phones, tone, language = self.get_text(
|
89 |
-
text, word2ph, phones, tone, language, audiopath
|
90 |
-
)
|
91 |
-
|
92 |
-
spec, wav = self.get_audio(audiopath)
|
93 |
-
sid = torch.LongTensor([int(self.spk_map[sid])])
|
94 |
-
return (phones, spec, wav, sid, tone, language, bert, ja_bert)
|
95 |
-
|
96 |
-
def get_audio(self, filename):
|
97 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
98 |
-
if sampling_rate != self.sampling_rate:
|
99 |
-
raise ValueError(
|
100 |
-
"{} {} SR doesn't match target {} SR".format(
|
101 |
-
filename, sampling_rate, self.sampling_rate
|
102 |
-
)
|
103 |
-
)
|
104 |
-
audio_norm = audio / self.max_wav_value
|
105 |
-
audio_norm = audio_norm.unsqueeze(0)
|
106 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
107 |
-
if self.use_mel_spec_posterior:
|
108 |
-
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
109 |
-
try:
|
110 |
-
spec = torch.load(spec_filename)
|
111 |
-
except:
|
112 |
-
if self.use_mel_spec_posterior:
|
113 |
-
spec = mel_spectrogram_torch(
|
114 |
-
audio_norm,
|
115 |
-
self.filter_length,
|
116 |
-
self.n_mel_channels,
|
117 |
-
self.sampling_rate,
|
118 |
-
self.hop_length,
|
119 |
-
self.win_length,
|
120 |
-
self.hparams.mel_fmin,
|
121 |
-
self.hparams.mel_fmax,
|
122 |
-
center=False,
|
123 |
-
)
|
124 |
-
else:
|
125 |
-
spec = spectrogram_torch(
|
126 |
-
audio_norm,
|
127 |
-
self.filter_length,
|
128 |
-
self.sampling_rate,
|
129 |
-
self.hop_length,
|
130 |
-
self.win_length,
|
131 |
-
center=False,
|
132 |
-
)
|
133 |
-
spec = torch.squeeze(spec, 0)
|
134 |
-
torch.save(spec, spec_filename)
|
135 |
-
return spec, audio_norm
|
136 |
-
|
137 |
-
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
138 |
-
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
139 |
-
if self.add_blank:
|
140 |
-
phone = commons.intersperse(phone, 0)
|
141 |
-
tone = commons.intersperse(tone, 0)
|
142 |
-
language = commons.intersperse(language, 0)
|
143 |
-
for i in range(len(word2ph)):
|
144 |
-
word2ph[i] = word2ph[i] * 2
|
145 |
-
word2ph[0] += 1
|
146 |
-
bert_path = wav_path.replace(".wav", ".bert.pt")
|
147 |
-
try:
|
148 |
-
bert = torch.load(bert_path)
|
149 |
-
assert bert.shape[-1] == len(phone)
|
150 |
-
except:
|
151 |
-
bert = get_bert(text, word2ph, language_str)
|
152 |
-
torch.save(bert, bert_path)
|
153 |
-
assert bert.shape[-1] == len(phone), phone
|
154 |
-
|
155 |
-
if language_str == "ZH":
|
156 |
-
bert = bert
|
157 |
-
ja_bert = torch.zeros(768, len(phone))
|
158 |
-
elif language_str == "JP":
|
159 |
-
ja_bert = bert
|
160 |
-
bert = torch.zeros(1024, len(phone))
|
161 |
-
else:
|
162 |
-
bert = torch.zeros(1024, len(phone))
|
163 |
-
ja_bert = torch.zeros(768, len(phone))
|
164 |
-
assert bert.shape[-1] == len(phone), (
|
165 |
-
bert.shape,
|
166 |
-
len(phone),
|
167 |
-
sum(word2ph),
|
168 |
-
p1,
|
169 |
-
p2,
|
170 |
-
t1,
|
171 |
-
t2,
|
172 |
-
pold,
|
173 |
-
pold2,
|
174 |
-
word2ph,
|
175 |
-
text,
|
176 |
-
w2pho,
|
177 |
-
)
|
178 |
-
phone = torch.LongTensor(phone)
|
179 |
-
tone = torch.LongTensor(tone)
|
180 |
-
language = torch.LongTensor(language)
|
181 |
-
return bert, ja_bert, phone, tone, language
|
182 |
-
|
183 |
-
def get_sid(self, sid):
|
184 |
-
sid = torch.LongTensor([int(sid)])
|
185 |
-
return sid
|
186 |
-
|
187 |
-
def __getitem__(self, index):
|
188 |
-
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
189 |
-
|
190 |
-
def __len__(self):
|
191 |
-
return len(self.audiopaths_sid_text)
|
192 |
-
|
193 |
-
|
194 |
-
class TextAudioSpeakerCollate:
|
195 |
-
"""Zero-pads model inputs and targets"""
|
196 |
-
|
197 |
-
def __init__(self, return_ids=False):
|
198 |
-
self.return_ids = return_ids
|
199 |
-
|
200 |
-
def __call__(self, batch):
|
201 |
-
"""Collate's training batch from normalized text, audio and speaker identities
|
202 |
-
PARAMS
|
203 |
-
------
|
204 |
-
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
205 |
-
"""
|
206 |
-
# Right zero-pad all one-hot text sequences to max input length
|
207 |
-
_, ids_sorted_decreasing = torch.sort(
|
208 |
-
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
209 |
-
)
|
210 |
-
|
211 |
-
max_text_len = max([len(x[0]) for x in batch])
|
212 |
-
max_spec_len = max([x[1].size(1) for x in batch])
|
213 |
-
max_wav_len = max([x[2].size(1) for x in batch])
|
214 |
-
|
215 |
-
text_lengths = torch.LongTensor(len(batch))
|
216 |
-
spec_lengths = torch.LongTensor(len(batch))
|
217 |
-
wav_lengths = torch.LongTensor(len(batch))
|
218 |
-
sid = torch.LongTensor(len(batch))
|
219 |
-
|
220 |
-
text_padded = torch.LongTensor(len(batch), max_text_len)
|
221 |
-
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
222 |
-
language_padded = torch.LongTensor(len(batch), max_text_len)
|
223 |
-
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
224 |
-
ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
|
225 |
-
|
226 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
227 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
228 |
-
text_padded.zero_()
|
229 |
-
tone_padded.zero_()
|
230 |
-
language_padded.zero_()
|
231 |
-
spec_padded.zero_()
|
232 |
-
wav_padded.zero_()
|
233 |
-
bert_padded.zero_()
|
234 |
-
ja_bert_padded.zero_()
|
235 |
-
for i in range(len(ids_sorted_decreasing)):
|
236 |
-
row = batch[ids_sorted_decreasing[i]]
|
237 |
-
|
238 |
-
text = row[0]
|
239 |
-
text_padded[i, : text.size(0)] = text
|
240 |
-
text_lengths[i] = text.size(0)
|
241 |
-
|
242 |
-
spec = row[1]
|
243 |
-
spec_padded[i, :, : spec.size(1)] = spec
|
244 |
-
spec_lengths[i] = spec.size(1)
|
245 |
-
|
246 |
-
wav = row[2]
|
247 |
-
wav_padded[i, :, : wav.size(1)] = wav
|
248 |
-
wav_lengths[i] = wav.size(1)
|
249 |
-
|
250 |
-
sid[i] = row[3]
|
251 |
-
|
252 |
-
tone = row[4]
|
253 |
-
tone_padded[i, : tone.size(0)] = tone
|
254 |
-
|
255 |
-
language = row[5]
|
256 |
-
language_padded[i, : language.size(0)] = language
|
257 |
-
|
258 |
-
bert = row[6]
|
259 |
-
bert_padded[i, :, : bert.size(1)] = bert
|
260 |
-
|
261 |
-
ja_bert = row[7]
|
262 |
-
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
263 |
-
|
264 |
-
return (
|
265 |
-
text_padded,
|
266 |
-
text_lengths,
|
267 |
-
spec_padded,
|
268 |
-
spec_lengths,
|
269 |
-
wav_padded,
|
270 |
-
wav_lengths,
|
271 |
-
sid,
|
272 |
-
tone_padded,
|
273 |
-
language_padded,
|
274 |
-
bert_padded,
|
275 |
-
ja_bert_padded,
|
276 |
-
)
|
277 |
-
|
278 |
-
|
279 |
-
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
280 |
-
"""
|
281 |
-
Maintain similar input lengths in a batch.
|
282 |
-
Length groups are specified by boundaries.
|
283 |
-
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
284 |
-
|
285 |
-
It removes samples which are not included in the boundaries.
|
286 |
-
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
287 |
-
"""
|
288 |
-
|
289 |
-
def __init__(
|
290 |
-
self,
|
291 |
-
dataset,
|
292 |
-
batch_size,
|
293 |
-
boundaries,
|
294 |
-
num_replicas=None,
|
295 |
-
rank=None,
|
296 |
-
shuffle=True,
|
297 |
-
):
|
298 |
-
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
299 |
-
self.lengths = dataset.lengths
|
300 |
-
self.batch_size = batch_size
|
301 |
-
self.boundaries = boundaries
|
302 |
-
|
303 |
-
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
304 |
-
self.total_size = sum(self.num_samples_per_bucket)
|
305 |
-
self.num_samples = self.total_size // self.num_replicas
|
306 |
-
|
307 |
-
def _create_buckets(self):
|
308 |
-
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
309 |
-
for i in range(len(self.lengths)):
|
310 |
-
length = self.lengths[i]
|
311 |
-
idx_bucket = self._bisect(length)
|
312 |
-
if idx_bucket != -1:
|
313 |
-
buckets[idx_bucket].append(i)
|
314 |
-
|
315 |
-
try:
|
316 |
-
for i in range(len(buckets) - 1, 0, -1):
|
317 |
-
if len(buckets[i]) == 0:
|
318 |
-
buckets.pop(i)
|
319 |
-
self.boundaries.pop(i + 1)
|
320 |
-
assert all(len(bucket) > 0 for bucket in buckets)
|
321 |
-
# When one bucket is not traversed
|
322 |
-
except Exception as e:
|
323 |
-
print("Bucket warning ", e)
|
324 |
-
for i in range(len(buckets) - 1, -1, -1):
|
325 |
-
if len(buckets[i]) == 0:
|
326 |
-
buckets.pop(i)
|
327 |
-
self.boundaries.pop(i + 1)
|
328 |
-
|
329 |
-
num_samples_per_bucket = []
|
330 |
-
for i in range(len(buckets)):
|
331 |
-
len_bucket = len(buckets[i])
|
332 |
-
total_batch_size = self.num_replicas * self.batch_size
|
333 |
-
rem = (
|
334 |
-
total_batch_size - (len_bucket % total_batch_size)
|
335 |
-
) % total_batch_size
|
336 |
-
num_samples_per_bucket.append(len_bucket + rem)
|
337 |
-
return buckets, num_samples_per_bucket
|
338 |
-
|
339 |
-
def __iter__(self):
|
340 |
-
# deterministically shuffle based on epoch
|
341 |
-
g = torch.Generator()
|
342 |
-
g.manual_seed(self.epoch)
|
343 |
-
|
344 |
-
indices = []
|
345 |
-
if self.shuffle:
|
346 |
-
for bucket in self.buckets:
|
347 |
-
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
348 |
-
else:
|
349 |
-
for bucket in self.buckets:
|
350 |
-
indices.append(list(range(len(bucket))))
|
351 |
-
|
352 |
-
batches = []
|
353 |
-
for i in range(len(self.buckets)):
|
354 |
-
bucket = self.buckets[i]
|
355 |
-
len_bucket = len(bucket)
|
356 |
-
if len_bucket == 0:
|
357 |
-
continue
|
358 |
-
ids_bucket = indices[i]
|
359 |
-
num_samples_bucket = self.num_samples_per_bucket[i]
|
360 |
-
|
361 |
-
# add extra samples to make it evenly divisible
|
362 |
-
rem = num_samples_bucket - len_bucket
|
363 |
-
ids_bucket = (
|
364 |
-
ids_bucket
|
365 |
-
+ ids_bucket * (rem // len_bucket)
|
366 |
-
+ ids_bucket[: (rem % len_bucket)]
|
367 |
-
)
|
368 |
-
|
369 |
-
# subsample
|
370 |
-
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
371 |
-
|
372 |
-
# batching
|
373 |
-
for j in range(len(ids_bucket) // self.batch_size):
|
374 |
-
batch = [
|
375 |
-
bucket[idx]
|
376 |
-
for idx in ids_bucket[
|
377 |
-
j * self.batch_size : (j + 1) * self.batch_size
|
378 |
-
]
|
379 |
-
]
|
380 |
-
batches.append(batch)
|
381 |
-
|
382 |
-
if self.shuffle:
|
383 |
-
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
384 |
-
batches = [batches[i] for i in batch_ids]
|
385 |
-
self.batches = batches
|
386 |
-
|
387 |
-
assert len(self.batches) * self.batch_size == self.num_samples
|
388 |
-
return iter(self.batches)
|
389 |
-
|
390 |
-
def _bisect(self, x, lo=0, hi=None):
|
391 |
-
if hi is None:
|
392 |
-
hi = len(self.boundaries) - 1
|
393 |
-
|
394 |
-
if hi > lo:
|
395 |
-
mid = (hi + lo) // 2
|
396 |
-
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
397 |
-
return mid
|
398 |
-
elif x <= self.boundaries[mid]:
|
399 |
-
return self._bisect(x, lo, mid)
|
400 |
-
else:
|
401 |
-
return self._bisect(x, mid + 1, hi)
|
402 |
-
else:
|
403 |
-
return -1
|
404 |
-
|
405 |
-
def __len__(self):
|
406 |
-
return self.num_samples // self.batch_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_logs.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|
losses.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
|
4 |
-
def feature_loss(fmap_r, fmap_g):
|
5 |
-
loss = 0
|
6 |
-
for dr, dg in zip(fmap_r, fmap_g):
|
7 |
-
for rl, gl in zip(dr, dg):
|
8 |
-
rl = rl.float().detach()
|
9 |
-
gl = gl.float()
|
10 |
-
loss += torch.mean(torch.abs(rl - gl))
|
11 |
-
|
12 |
-
return loss * 2
|
13 |
-
|
14 |
-
|
15 |
-
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
16 |
-
loss = 0
|
17 |
-
r_losses = []
|
18 |
-
g_losses = []
|
19 |
-
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
20 |
-
dr = dr.float()
|
21 |
-
dg = dg.float()
|
22 |
-
r_loss = torch.mean((1 - dr) ** 2)
|
23 |
-
g_loss = torch.mean(dg**2)
|
24 |
-
loss += r_loss + g_loss
|
25 |
-
r_losses.append(r_loss.item())
|
26 |
-
g_losses.append(g_loss.item())
|
27 |
-
|
28 |
-
return loss, r_losses, g_losses
|
29 |
-
|
30 |
-
|
31 |
-
def generator_loss(disc_outputs):
|
32 |
-
loss = 0
|
33 |
-
gen_losses = []
|
34 |
-
for dg in disc_outputs:
|
35 |
-
dg = dg.float()
|
36 |
-
l = torch.mean((1 - dg) ** 2)
|
37 |
-
gen_losses.append(l)
|
38 |
-
loss += l
|
39 |
-
|
40 |
-
return loss, gen_losses
|
41 |
-
|
42 |
-
|
43 |
-
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
44 |
-
"""
|
45 |
-
z_p, logs_q: [b, h, t_t]
|
46 |
-
m_p, logs_p: [b, h, t_t]
|
47 |
-
"""
|
48 |
-
z_p = z_p.float()
|
49 |
-
logs_q = logs_q.float()
|
50 |
-
m_p = m_p.float()
|
51 |
-
logs_p = logs_p.float()
|
52 |
-
z_mask = z_mask.float()
|
53 |
-
|
54 |
-
kl = logs_p - logs_q - 0.5
|
55 |
-
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
56 |
-
kl = torch.sum(kl * z_mask)
|
57 |
-
l = kl / torch.sum(z_mask)
|
58 |
-
return l
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocess_text.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from collections import defaultdict
|
3 |
-
from random import shuffle
|
4 |
-
from typing import Optional
|
5 |
-
|
6 |
-
from tqdm import tqdm
|
7 |
-
import click
|
8 |
-
from text.cleaner import clean_text
|
9 |
-
|
10 |
-
|
11 |
-
@click.command()
|
12 |
-
@click.option(
|
13 |
-
"--transcription-path",
|
14 |
-
default="filelists/genshin.list",
|
15 |
-
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
16 |
-
)
|
17 |
-
@click.option("--cleaned-path", default=None)
|
18 |
-
@click.option("--train-path", default="filelists/train.list")
|
19 |
-
@click.option("--val-path", default="filelists/val.list")
|
20 |
-
@click.option(
|
21 |
-
"--config-path",
|
22 |
-
default="configs/config.json",
|
23 |
-
type=click.Path(exists=True, file_okay=True, dir_okay=False),
|
24 |
-
)
|
25 |
-
@click.option("--val-per-spk", default=4)
|
26 |
-
@click.option("--max-val-total", default=8)
|
27 |
-
@click.option("--clean/--no-clean", default=True)
|
28 |
-
def main(
|
29 |
-
transcription_path: str,
|
30 |
-
cleaned_path: Optional[str],
|
31 |
-
train_path: str,
|
32 |
-
val_path: str,
|
33 |
-
config_path: str,
|
34 |
-
val_per_spk: int,
|
35 |
-
max_val_total: int,
|
36 |
-
clean: bool,
|
37 |
-
):
|
38 |
-
if cleaned_path is None:
|
39 |
-
cleaned_path = transcription_path + ".cleaned"
|
40 |
-
|
41 |
-
if clean:
|
42 |
-
errors = 0
|
43 |
-
out_file = open(cleaned_path, "w", encoding="utf-8")
|
44 |
-
for line in tqdm(open(transcription_path, encoding="utf-8").readlines()):
|
45 |
-
try:
|
46 |
-
utt, spk, language, text = line.strip().split("|")
|
47 |
-
norm_text, phones, tones, word2ph = clean_text(text, language)
|
48 |
-
out_file.write(
|
49 |
-
"{}|{}|{}|{}|{}|{}|{}\n".format(
|
50 |
-
utt,
|
51 |
-
spk,
|
52 |
-
language,
|
53 |
-
norm_text,
|
54 |
-
" ".join(phones),
|
55 |
-
" ".join([str(i) for i in tones]),
|
56 |
-
" ".join([str(i) for i in word2ph]),
|
57 |
-
)
|
58 |
-
)
|
59 |
-
except Exception as error:
|
60 |
-
errors += 1
|
61 |
-
print("err!", line, error)
|
62 |
-
print("errors:", errors)
|
63 |
-
out_file.close()
|
64 |
-
|
65 |
-
transcription_path = cleaned_path
|
66 |
-
|
67 |
-
spk_utt_map = defaultdict(list)
|
68 |
-
spk_id_map = {}
|
69 |
-
current_sid = 0
|
70 |
-
|
71 |
-
with open(transcription_path, encoding="utf-8") as f:
|
72 |
-
for line in f.readlines():
|
73 |
-
utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
|
74 |
-
spk_utt_map[spk].append(line)
|
75 |
-
|
76 |
-
if spk not in spk_id_map.keys():
|
77 |
-
spk_id_map[spk] = current_sid
|
78 |
-
current_sid += 1
|
79 |
-
|
80 |
-
train_list = []
|
81 |
-
val_list = []
|
82 |
-
|
83 |
-
for spk, utts in spk_utt_map.items():
|
84 |
-
shuffle(utts)
|
85 |
-
val_list += utts[:val_per_spk]
|
86 |
-
train_list += utts[val_per_spk:]
|
87 |
-
|
88 |
-
if len(val_list) > max_val_total:
|
89 |
-
train_list += val_list[max_val_total:]
|
90 |
-
val_list = val_list[:max_val_total]
|
91 |
-
|
92 |
-
with open(train_path, "w", encoding="utf-8") as f:
|
93 |
-
for line in train_list:
|
94 |
-
f.write(line)
|
95 |
-
|
96 |
-
with open(val_path, "w", encoding="utf-8") as f:
|
97 |
-
for line in val_list:
|
98 |
-
f.write(line)
|
99 |
-
|
100 |
-
config = json.load(open(config_path, encoding="utf-8"))
|
101 |
-
config["data"]["spk2id"] = spk_id_map
|
102 |
-
with open(config_path, "w", encoding="utf-8") as f:
|
103 |
-
json.dump(config, f, indent=2, ensure_ascii=False)
|
104 |
-
|
105 |
-
|
106 |
-
if __name__ == "__main__":
|
107 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
resample.py
DELETED
@@ -1,48 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import argparse
|
3 |
-
import librosa
|
4 |
-
from multiprocessing import Pool, cpu_count
|
5 |
-
|
6 |
-
import soundfile
|
7 |
-
from tqdm import tqdm
|
8 |
-
|
9 |
-
|
10 |
-
def process(item):
|
11 |
-
spkdir, wav_name, args = item
|
12 |
-
speaker = spkdir.replace("\\", "/").split("/")[-1]
|
13 |
-
wav_path = os.path.join(args.in_dir, speaker, wav_name)
|
14 |
-
if os.path.exists(wav_path) and ".wav" in wav_path:
|
15 |
-
os.makedirs(os.path.join(args.out_dir, speaker), exist_ok=True)
|
16 |
-
wav, sr = librosa.load(wav_path, sr=args.sr)
|
17 |
-
soundfile.write(os.path.join(args.out_dir, speaker, wav_name), wav, sr)
|
18 |
-
|
19 |
-
|
20 |
-
if __name__ == "__main__":
|
21 |
-
parser = argparse.ArgumentParser()
|
22 |
-
parser.add_argument("--sr", type=int, default=44100, help="sampling rate")
|
23 |
-
parser.add_argument(
|
24 |
-
"--in_dir", type=str, default="./raw", help="path to source dir"
|
25 |
-
)
|
26 |
-
parser.add_argument(
|
27 |
-
"--out_dir", type=str, default="./dataset", help="path to target dir"
|
28 |
-
)
|
29 |
-
args = parser.parse_args()
|
30 |
-
# processes = 8
|
31 |
-
processes = cpu_count() - 2 if cpu_count() > 4 else 1
|
32 |
-
pool = Pool(processes=processes)
|
33 |
-
|
34 |
-
for speaker in os.listdir(args.in_dir):
|
35 |
-
spk_dir = os.path.join(args.in_dir, speaker)
|
36 |
-
if os.path.isdir(spk_dir):
|
37 |
-
print(spk_dir)
|
38 |
-
for _ in tqdm(
|
39 |
-
pool.imap_unordered(
|
40 |
-
process,
|
41 |
-
[
|
42 |
-
(spk_dir, i, args)
|
43 |
-
for i in os.listdir(spk_dir)
|
44 |
-
if i.endswith("wav")
|
45 |
-
],
|
46 |
-
)
|
47 |
-
):
|
48 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_ms.py
DELETED
@@ -1,596 +0,0 @@
|
|
1 |
-
# flake8: noqa: E402
|
2 |
-
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from torch.utils.data import DataLoader
|
7 |
-
from torch.utils.tensorboard import SummaryWriter
|
8 |
-
import torch.distributed as dist
|
9 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
-
from torch.cuda.amp import autocast, GradScaler
|
11 |
-
from tqdm import tqdm
|
12 |
-
import logging
|
13 |
-
|
14 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
15 |
-
import commons
|
16 |
-
import utils
|
17 |
-
from data_utils import (
|
18 |
-
TextAudioSpeakerLoader,
|
19 |
-
TextAudioSpeakerCollate,
|
20 |
-
DistributedBucketSampler,
|
21 |
-
)
|
22 |
-
from models import (
|
23 |
-
SynthesizerTrn,
|
24 |
-
MultiPeriodDiscriminator,
|
25 |
-
DurationDiscriminator,
|
26 |
-
)
|
27 |
-
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
28 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
29 |
-
from text.symbols import symbols
|
30 |
-
|
31 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
-
torch.backends.cudnn.allow_tf32 = (
|
33 |
-
True # If encontered training problem,please try to disable TF32.
|
34 |
-
)
|
35 |
-
torch.set_float32_matmul_precision("medium")
|
36 |
-
torch.backends.cudnn.benchmark = True
|
37 |
-
torch.backends.cuda.sdp_kernel("flash")
|
38 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
39 |
-
torch.backends.cuda.enable_mem_efficient_sdp(
|
40 |
-
True
|
41 |
-
) # Not available if torch version is lower than 2.0
|
42 |
-
torch.backends.cuda.enable_math_sdp(True)
|
43 |
-
global_step = 0
|
44 |
-
|
45 |
-
|
46 |
-
def run():
|
47 |
-
dist.init_process_group(
|
48 |
-
backend="gloo",
|
49 |
-
init_method='tcp://127.0.0.1:11451', # Due to some training problem,we proposed to use gloo instead of nccl.
|
50 |
-
rank=0,
|
51 |
-
world_size=1,
|
52 |
-
) # Use torchrun instead of mp.spawn
|
53 |
-
rank = dist.get_rank()
|
54 |
-
n_gpus = dist.get_world_size()
|
55 |
-
hps = utils.get_hparams()
|
56 |
-
torch.manual_seed(hps.train.seed)
|
57 |
-
torch.cuda.set_device(rank)
|
58 |
-
global global_step
|
59 |
-
if rank == 0:
|
60 |
-
logger = utils.get_logger(hps.model_dir)
|
61 |
-
logger.info(hps)
|
62 |
-
utils.check_git_hash(hps.model_dir)
|
63 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
64 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
65 |
-
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
66 |
-
train_sampler = DistributedBucketSampler(
|
67 |
-
train_dataset,
|
68 |
-
hps.train.batch_size,
|
69 |
-
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
70 |
-
num_replicas=n_gpus,
|
71 |
-
rank=rank,
|
72 |
-
shuffle=True,
|
73 |
-
)
|
74 |
-
collate_fn = TextAudioSpeakerCollate()
|
75 |
-
train_loader = DataLoader(
|
76 |
-
train_dataset,
|
77 |
-
num_workers=16,
|
78 |
-
shuffle=False,
|
79 |
-
pin_memory=True,
|
80 |
-
collate_fn=collate_fn,
|
81 |
-
batch_sampler=train_sampler,
|
82 |
-
persistent_workers=True,
|
83 |
-
prefetch_factor=4,
|
84 |
-
) # DataLoader config could be adjusted.
|
85 |
-
if rank == 0:
|
86 |
-
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
87 |
-
eval_loader = DataLoader(
|
88 |
-
eval_dataset,
|
89 |
-
num_workers=0,
|
90 |
-
shuffle=False,
|
91 |
-
batch_size=1,
|
92 |
-
pin_memory=True,
|
93 |
-
drop_last=False,
|
94 |
-
collate_fn=collate_fn,
|
95 |
-
)
|
96 |
-
if (
|
97 |
-
"use_noise_scaled_mas" in hps.model.keys()
|
98 |
-
and hps.model.use_noise_scaled_mas is True
|
99 |
-
):
|
100 |
-
print("Using noise scaled MAS for VITS2")
|
101 |
-
mas_noise_scale_initial = 0.01
|
102 |
-
noise_scale_delta = 2e-6
|
103 |
-
else:
|
104 |
-
print("Using normal MAS for VITS1")
|
105 |
-
mas_noise_scale_initial = 0.0
|
106 |
-
noise_scale_delta = 0.0
|
107 |
-
if (
|
108 |
-
"use_duration_discriminator" in hps.model.keys()
|
109 |
-
and hps.model.use_duration_discriminator is True
|
110 |
-
):
|
111 |
-
print("Using duration discriminator for VITS2")
|
112 |
-
net_dur_disc = DurationDiscriminator(
|
113 |
-
hps.model.hidden_channels,
|
114 |
-
hps.model.hidden_channels,
|
115 |
-
3,
|
116 |
-
0.1,
|
117 |
-
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
118 |
-
).cuda(rank)
|
119 |
-
if (
|
120 |
-
"use_spk_conditioned_encoder" in hps.model.keys()
|
121 |
-
and hps.model.use_spk_conditioned_encoder is True
|
122 |
-
):
|
123 |
-
if hps.data.n_speakers == 0:
|
124 |
-
raise ValueError(
|
125 |
-
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
126 |
-
)
|
127 |
-
else:
|
128 |
-
print("Using normal encoder for VITS1")
|
129 |
-
|
130 |
-
net_g = SynthesizerTrn(
|
131 |
-
len(symbols),
|
132 |
-
hps.data.filter_length // 2 + 1,
|
133 |
-
hps.train.segment_size // hps.data.hop_length,
|
134 |
-
n_speakers=hps.data.n_speakers,
|
135 |
-
mas_noise_scale_initial=mas_noise_scale_initial,
|
136 |
-
noise_scale_delta=noise_scale_delta,
|
137 |
-
**hps.model,
|
138 |
-
).cuda(rank)
|
139 |
-
|
140 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
141 |
-
optim_g = torch.optim.AdamW(
|
142 |
-
filter(lambda p: p.requires_grad, net_g.parameters()),
|
143 |
-
hps.train.learning_rate,
|
144 |
-
betas=hps.train.betas,
|
145 |
-
eps=hps.train.eps,
|
146 |
-
)
|
147 |
-
optim_d = torch.optim.AdamW(
|
148 |
-
net_d.parameters(),
|
149 |
-
hps.train.learning_rate,
|
150 |
-
betas=hps.train.betas,
|
151 |
-
eps=hps.train.eps,
|
152 |
-
)
|
153 |
-
if net_dur_disc is not None:
|
154 |
-
optim_dur_disc = torch.optim.AdamW(
|
155 |
-
net_dur_disc.parameters(),
|
156 |
-
hps.train.learning_rate,
|
157 |
-
betas=hps.train.betas,
|
158 |
-
eps=hps.train.eps,
|
159 |
-
)
|
160 |
-
else:
|
161 |
-
optim_dur_disc = None
|
162 |
-
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
163 |
-
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
164 |
-
if net_dur_disc is not None:
|
165 |
-
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
166 |
-
try:
|
167 |
-
if net_dur_disc is not None:
|
168 |
-
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
169 |
-
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
170 |
-
net_dur_disc,
|
171 |
-
optim_dur_disc,
|
172 |
-
skip_optimizer=hps.train.skip_optimizer
|
173 |
-
if "skip_optimizer" in hps.train
|
174 |
-
else True,
|
175 |
-
)
|
176 |
-
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
177 |
-
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
178 |
-
net_g,
|
179 |
-
optim_g,
|
180 |
-
skip_optimizer=hps.train.skip_optimizer
|
181 |
-
if "skip_optimizer" in hps.train
|
182 |
-
else True,
|
183 |
-
)
|
184 |
-
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
185 |
-
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
186 |
-
net_d,
|
187 |
-
optim_d,
|
188 |
-
skip_optimizer=hps.train.skip_optimizer
|
189 |
-
if "skip_optimizer" in hps.train
|
190 |
-
else True,
|
191 |
-
)
|
192 |
-
if not optim_g.param_groups[0].get("initial_lr"):
|
193 |
-
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
194 |
-
if not optim_d.param_groups[0].get("initial_lr"):
|
195 |
-
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
196 |
-
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
197 |
-
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
198 |
-
|
199 |
-
epoch_str = max(epoch_str, 1)
|
200 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
201 |
-
except Exception as e:
|
202 |
-
print(e)
|
203 |
-
epoch_str = 1
|
204 |
-
global_step = 0
|
205 |
-
|
206 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
207 |
-
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
208 |
-
)
|
209 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
210 |
-
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
211 |
-
)
|
212 |
-
if net_dur_disc is not None:
|
213 |
-
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
214 |
-
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
215 |
-
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
216 |
-
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
217 |
-
)
|
218 |
-
else:
|
219 |
-
scheduler_dur_disc = None
|
220 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
221 |
-
|
222 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
223 |
-
if rank == 0:
|
224 |
-
train_and_evaluate(
|
225 |
-
rank,
|
226 |
-
epoch,
|
227 |
-
hps,
|
228 |
-
[net_g, net_d, net_dur_disc],
|
229 |
-
[optim_g, optim_d, optim_dur_disc],
|
230 |
-
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
231 |
-
scaler,
|
232 |
-
[train_loader, eval_loader],
|
233 |
-
logger,
|
234 |
-
[writer, writer_eval],
|
235 |
-
)
|
236 |
-
else:
|
237 |
-
train_and_evaluate(
|
238 |
-
rank,
|
239 |
-
epoch,
|
240 |
-
hps,
|
241 |
-
[net_g, net_d, net_dur_disc],
|
242 |
-
[optim_g, optim_d, optim_dur_disc],
|
243 |
-
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
244 |
-
scaler,
|
245 |
-
[train_loader, None],
|
246 |
-
None,
|
247 |
-
None,
|
248 |
-
)
|
249 |
-
scheduler_g.step()
|
250 |
-
scheduler_d.step()
|
251 |
-
if net_dur_disc is not None:
|
252 |
-
scheduler_dur_disc.step()
|
253 |
-
|
254 |
-
|
255 |
-
def train_and_evaluate(
|
256 |
-
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
257 |
-
):
|
258 |
-
net_g, net_d, net_dur_disc = nets
|
259 |
-
optim_g, optim_d, optim_dur_disc = optims
|
260 |
-
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
261 |
-
train_loader, eval_loader = loaders
|
262 |
-
if writers is not None:
|
263 |
-
writer, writer_eval = writers
|
264 |
-
|
265 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
266 |
-
global global_step
|
267 |
-
|
268 |
-
net_g.train()
|
269 |
-
net_d.train()
|
270 |
-
if net_dur_disc is not None:
|
271 |
-
net_dur_disc.train()
|
272 |
-
for batch_idx, (
|
273 |
-
x,
|
274 |
-
x_lengths,
|
275 |
-
spec,
|
276 |
-
spec_lengths,
|
277 |
-
y,
|
278 |
-
y_lengths,
|
279 |
-
speakers,
|
280 |
-
tone,
|
281 |
-
language,
|
282 |
-
bert,
|
283 |
-
ja_bert,
|
284 |
-
) in tqdm(enumerate(train_loader)):
|
285 |
-
if net_g.module.use_noise_scaled_mas:
|
286 |
-
current_mas_noise_scale = (
|
287 |
-
net_g.module.mas_noise_scale_initial
|
288 |
-
- net_g.module.noise_scale_delta * global_step
|
289 |
-
)
|
290 |
-
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
291 |
-
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
292 |
-
rank, non_blocking=True
|
293 |
-
)
|
294 |
-
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
295 |
-
rank, non_blocking=True
|
296 |
-
)
|
297 |
-
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
298 |
-
rank, non_blocking=True
|
299 |
-
)
|
300 |
-
speakers = speakers.cuda(rank, non_blocking=True)
|
301 |
-
tone = tone.cuda(rank, non_blocking=True)
|
302 |
-
language = language.cuda(rank, non_blocking=True)
|
303 |
-
bert = bert.cuda(rank, non_blocking=True)
|
304 |
-
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
305 |
-
|
306 |
-
with autocast(enabled=hps.train.fp16_run):
|
307 |
-
(
|
308 |
-
y_hat,
|
309 |
-
l_length,
|
310 |
-
attn,
|
311 |
-
ids_slice,
|
312 |
-
x_mask,
|
313 |
-
z_mask,
|
314 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
315 |
-
(hidden_x, logw, logw_),
|
316 |
-
) = net_g(
|
317 |
-
x,
|
318 |
-
x_lengths,
|
319 |
-
spec,
|
320 |
-
spec_lengths,
|
321 |
-
speakers,
|
322 |
-
tone,
|
323 |
-
language,
|
324 |
-
bert,
|
325 |
-
ja_bert,
|
326 |
-
)
|
327 |
-
mel = spec_to_mel_torch(
|
328 |
-
spec,
|
329 |
-
hps.data.filter_length,
|
330 |
-
hps.data.n_mel_channels,
|
331 |
-
hps.data.sampling_rate,
|
332 |
-
hps.data.mel_fmin,
|
333 |
-
hps.data.mel_fmax,
|
334 |
-
)
|
335 |
-
y_mel = commons.slice_segments(
|
336 |
-
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
337 |
-
)
|
338 |
-
y_hat_mel = mel_spectrogram_torch(
|
339 |
-
y_hat.squeeze(1),
|
340 |
-
hps.data.filter_length,
|
341 |
-
hps.data.n_mel_channels,
|
342 |
-
hps.data.sampling_rate,
|
343 |
-
hps.data.hop_length,
|
344 |
-
hps.data.win_length,
|
345 |
-
hps.data.mel_fmin,
|
346 |
-
hps.data.mel_fmax,
|
347 |
-
)
|
348 |
-
|
349 |
-
y = commons.slice_segments(
|
350 |
-
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
351 |
-
) # slice
|
352 |
-
|
353 |
-
# Discriminator
|
354 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
355 |
-
with autocast(enabled=False):
|
356 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
357 |
-
y_d_hat_r, y_d_hat_g
|
358 |
-
)
|
359 |
-
loss_disc_all = loss_disc
|
360 |
-
if net_dur_disc is not None:
|
361 |
-
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
362 |
-
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
363 |
-
)
|
364 |
-
with autocast(enabled=False):
|
365 |
-
# TODO: I think need to mean using the mask, but for now, just mean all
|
366 |
-
(
|
367 |
-
loss_dur_disc,
|
368 |
-
losses_dur_disc_r,
|
369 |
-
losses_dur_disc_g,
|
370 |
-
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
371 |
-
loss_dur_disc_all = loss_dur_disc
|
372 |
-
optim_dur_disc.zero_grad()
|
373 |
-
scaler.scale(loss_dur_disc_all).backward()
|
374 |
-
scaler.unscale_(optim_dur_disc)
|
375 |
-
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
376 |
-
scaler.step(optim_dur_disc)
|
377 |
-
|
378 |
-
optim_d.zero_grad()
|
379 |
-
scaler.scale(loss_disc_all).backward()
|
380 |
-
scaler.unscale_(optim_d)
|
381 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
382 |
-
scaler.step(optim_d)
|
383 |
-
|
384 |
-
with autocast(enabled=hps.train.fp16_run):
|
385 |
-
# Generator
|
386 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
387 |
-
if net_dur_disc is not None:
|
388 |
-
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
389 |
-
with autocast(enabled=False):
|
390 |
-
loss_dur = torch.sum(l_length.float())
|
391 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
392 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
393 |
-
|
394 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
395 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
396 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
397 |
-
if net_dur_disc is not None:
|
398 |
-
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
399 |
-
loss_gen_all += loss_dur_gen
|
400 |
-
optim_g.zero_grad()
|
401 |
-
scaler.scale(loss_gen_all).backward()
|
402 |
-
scaler.unscale_(optim_g)
|
403 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
404 |
-
scaler.step(optim_g)
|
405 |
-
scaler.update()
|
406 |
-
|
407 |
-
if rank == 0:
|
408 |
-
if global_step % hps.train.log_interval == 0:
|
409 |
-
lr = optim_g.param_groups[0]["lr"]
|
410 |
-
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
411 |
-
logger.info(
|
412 |
-
"Train Epoch: {} [{:.0f}%]".format(
|
413 |
-
epoch, 100.0 * batch_idx / len(train_loader)
|
414 |
-
)
|
415 |
-
)
|
416 |
-
logger.info([x.item() for x in losses] + [global_step, lr])
|
417 |
-
|
418 |
-
scalar_dict = {
|
419 |
-
"loss/g/total": loss_gen_all,
|
420 |
-
"loss/d/total": loss_disc_all,
|
421 |
-
"learning_rate": lr,
|
422 |
-
"grad_norm_d": grad_norm_d,
|
423 |
-
"grad_norm_g": grad_norm_g,
|
424 |
-
}
|
425 |
-
scalar_dict.update(
|
426 |
-
{
|
427 |
-
"loss/g/fm": loss_fm,
|
428 |
-
"loss/g/mel": loss_mel,
|
429 |
-
"loss/g/dur": loss_dur,
|
430 |
-
"loss/g/kl": loss_kl,
|
431 |
-
}
|
432 |
-
)
|
433 |
-
scalar_dict.update(
|
434 |
-
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
435 |
-
)
|
436 |
-
scalar_dict.update(
|
437 |
-
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
438 |
-
)
|
439 |
-
scalar_dict.update(
|
440 |
-
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
441 |
-
)
|
442 |
-
|
443 |
-
image_dict = {
|
444 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
445 |
-
y_mel[0].data.cpu().numpy()
|
446 |
-
),
|
447 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
448 |
-
y_hat_mel[0].data.cpu().numpy()
|
449 |
-
),
|
450 |
-
"all/mel": utils.plot_spectrogram_to_numpy(
|
451 |
-
mel[0].data.cpu().numpy()
|
452 |
-
),
|
453 |
-
"all/attn": utils.plot_alignment_to_numpy(
|
454 |
-
attn[0, 0].data.cpu().numpy()
|
455 |
-
),
|
456 |
-
}
|
457 |
-
utils.summarize(
|
458 |
-
writer=writer,
|
459 |
-
global_step=global_step,
|
460 |
-
images=image_dict,
|
461 |
-
scalars=scalar_dict,
|
462 |
-
)
|
463 |
-
|
464 |
-
if global_step % hps.train.eval_interval == 0:
|
465 |
-
evaluate(hps, net_g, eval_loader, writer_eval)
|
466 |
-
utils.save_checkpoint(
|
467 |
-
net_g,
|
468 |
-
optim_g,
|
469 |
-
hps.train.learning_rate,
|
470 |
-
epoch,
|
471 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
472 |
-
)
|
473 |
-
utils.save_checkpoint(
|
474 |
-
net_d,
|
475 |
-
optim_d,
|
476 |
-
hps.train.learning_rate,
|
477 |
-
epoch,
|
478 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
479 |
-
)
|
480 |
-
if net_dur_disc is not None:
|
481 |
-
utils.save_checkpoint(
|
482 |
-
net_dur_disc,
|
483 |
-
optim_dur_disc,
|
484 |
-
hps.train.learning_rate,
|
485 |
-
epoch,
|
486 |
-
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
487 |
-
)
|
488 |
-
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
489 |
-
if keep_ckpts > 0:
|
490 |
-
utils.clean_checkpoints(
|
491 |
-
path_to_models=hps.model_dir,
|
492 |
-
n_ckpts_to_keep=keep_ckpts,
|
493 |
-
sort_by_time=True,
|
494 |
-
)
|
495 |
-
|
496 |
-
global_step += 1
|
497 |
-
|
498 |
-
if rank == 0:
|
499 |
-
logger.info("====> Epoch: {}".format(epoch))
|
500 |
-
|
501 |
-
|
502 |
-
def evaluate(hps, generator, eval_loader, writer_eval):
|
503 |
-
generator.eval()
|
504 |
-
image_dict = {}
|
505 |
-
audio_dict = {}
|
506 |
-
print("Evaluating ...")
|
507 |
-
with torch.no_grad():
|
508 |
-
for batch_idx, (
|
509 |
-
x,
|
510 |
-
x_lengths,
|
511 |
-
spec,
|
512 |
-
spec_lengths,
|
513 |
-
y,
|
514 |
-
y_lengths,
|
515 |
-
speakers,
|
516 |
-
tone,
|
517 |
-
language,
|
518 |
-
bert,
|
519 |
-
ja_bert,
|
520 |
-
) in enumerate(eval_loader):
|
521 |
-
x, x_lengths = x.cuda(), x_lengths.cuda()
|
522 |
-
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
523 |
-
y, y_lengths = y.cuda(), y_lengths.cuda()
|
524 |
-
speakers = speakers.cuda()
|
525 |
-
bert = bert.cuda()
|
526 |
-
ja_bert = ja_bert.cuda()
|
527 |
-
tone = tone.cuda()
|
528 |
-
language = language.cuda()
|
529 |
-
for use_sdp in [True, False]:
|
530 |
-
y_hat, attn, mask, *_ = generator.module.infer(
|
531 |
-
x,
|
532 |
-
x_lengths,
|
533 |
-
speakers,
|
534 |
-
tone,
|
535 |
-
language,
|
536 |
-
bert,
|
537 |
-
ja_bert,
|
538 |
-
y=spec,
|
539 |
-
max_len=1000,
|
540 |
-
sdp_ratio=0.0 if not use_sdp else 1.0,
|
541 |
-
)
|
542 |
-
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
543 |
-
|
544 |
-
mel = spec_to_mel_torch(
|
545 |
-
spec,
|
546 |
-
hps.data.filter_length,
|
547 |
-
hps.data.n_mel_channels,
|
548 |
-
hps.data.sampling_rate,
|
549 |
-
hps.data.mel_fmin,
|
550 |
-
hps.data.mel_fmax,
|
551 |
-
)
|
552 |
-
y_hat_mel = mel_spectrogram_torch(
|
553 |
-
y_hat.squeeze(1).float(),
|
554 |
-
hps.data.filter_length,
|
555 |
-
hps.data.n_mel_channels,
|
556 |
-
hps.data.sampling_rate,
|
557 |
-
hps.data.hop_length,
|
558 |
-
hps.data.win_length,
|
559 |
-
hps.data.mel_fmin,
|
560 |
-
hps.data.mel_fmax,
|
561 |
-
)
|
562 |
-
image_dict.update(
|
563 |
-
{
|
564 |
-
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
565 |
-
y_hat_mel[0].cpu().numpy()
|
566 |
-
)
|
567 |
-
}
|
568 |
-
)
|
569 |
-
audio_dict.update(
|
570 |
-
{
|
571 |
-
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
572 |
-
0, :, : y_hat_lengths[0]
|
573 |
-
]
|
574 |
-
}
|
575 |
-
)
|
576 |
-
image_dict.update(
|
577 |
-
{
|
578 |
-
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
579 |
-
mel[0].cpu().numpy()
|
580 |
-
)
|
581 |
-
}
|
582 |
-
)
|
583 |
-
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
584 |
-
|
585 |
-
utils.summarize(
|
586 |
-
writer=writer_eval,
|
587 |
-
global_step=global_step,
|
588 |
-
images=image_dict,
|
589 |
-
audios=audio_dict,
|
590 |
-
audio_sampling_rate=hps.data.sampling_rate,
|
591 |
-
)
|
592 |
-
generator.train()
|
593 |
-
|
594 |
-
|
595 |
-
if __name__ == "__main__":
|
596 |
-
run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_ms_acc.py
DELETED
@@ -1,623 +0,0 @@
|
|
1 |
-
# flake8: noqa: E402
|
2 |
-
|
3 |
-
import os
|
4 |
-
import torch
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from torch.utils.data import DataLoader
|
7 |
-
from torch.utils.tensorboard import SummaryWriter
|
8 |
-
import torch.distributed as dist
|
9 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
-
from torch.cuda.amp import autocast, GradScaler
|
11 |
-
from tqdm import tqdm
|
12 |
-
import logging
|
13 |
-
|
14 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
15 |
-
import commons
|
16 |
-
import utils
|
17 |
-
from data_utils import (
|
18 |
-
TextAudioSpeakerLoader,
|
19 |
-
TextAudioSpeakerCollate,
|
20 |
-
DistributedBucketSampler,
|
21 |
-
)
|
22 |
-
from models import (
|
23 |
-
SynthesizerTrn,
|
24 |
-
MultiPeriodDiscriminator,
|
25 |
-
DurationDiscriminator,
|
26 |
-
)
|
27 |
-
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
|
28 |
-
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
|
29 |
-
from text.symbols import symbols
|
30 |
-
|
31 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
-
torch.backends.cudnn.allow_tf32 = (
|
33 |
-
True # If encontered training problem,please try to disable TF32.
|
34 |
-
)
|
35 |
-
torch.set_float32_matmul_precision("medium")
|
36 |
-
torch.backends.cudnn.benchmark = True
|
37 |
-
torch.backends.cuda.sdp_kernel("flash")
|
38 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
39 |
-
torch.backends.cuda.enable_mem_efficient_sdp(
|
40 |
-
True
|
41 |
-
) # Not available if torch version is lower than 2.0
|
42 |
-
torch.backends.cuda.enable_math_sdp(True)
|
43 |
-
global_step = 0
|
44 |
-
|
45 |
-
|
46 |
-
def run():
|
47 |
-
dist.init_process_group(
|
48 |
-
backend="gloo",
|
49 |
-
init_method='tcp://127.0.0.1:11451', # Due to some training problem,we proposed to use gloo instead of nccl.
|
50 |
-
rank=0,
|
51 |
-
world_size=1,
|
52 |
-
) # Use torchrun instead of mp.spawn
|
53 |
-
rank = dist.get_rank()
|
54 |
-
n_gpus = dist.get_world_size()
|
55 |
-
hps = utils.get_hparams()
|
56 |
-
torch.manual_seed(hps.train.seed)
|
57 |
-
torch.cuda.set_device(rank)
|
58 |
-
global global_step
|
59 |
-
if rank == 0:
|
60 |
-
logger = utils.get_logger(hps.model_dir)
|
61 |
-
logger.info(hps)
|
62 |
-
utils.check_git_hash(hps.model_dir)
|
63 |
-
writer = SummaryWriter(log_dir=hps.model_dir)
|
64 |
-
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
65 |
-
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
|
66 |
-
train_sampler = DistributedBucketSampler(
|
67 |
-
train_dataset,
|
68 |
-
hps.train.batch_size,
|
69 |
-
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
70 |
-
num_replicas=n_gpus,
|
71 |
-
rank=rank,
|
72 |
-
shuffle=True,
|
73 |
-
)
|
74 |
-
collate_fn = TextAudioSpeakerCollate()
|
75 |
-
train_loader = DataLoader(
|
76 |
-
train_dataset,
|
77 |
-
num_workers=16,
|
78 |
-
shuffle=False,
|
79 |
-
pin_memory=True,
|
80 |
-
collate_fn=collate_fn,
|
81 |
-
batch_sampler=train_sampler,
|
82 |
-
persistent_workers=True,
|
83 |
-
prefetch_factor=4,
|
84 |
-
) # DataLoader config could be adjusted.
|
85 |
-
if rank == 0:
|
86 |
-
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
|
87 |
-
eval_loader = DataLoader(
|
88 |
-
eval_dataset,
|
89 |
-
num_workers=0,
|
90 |
-
shuffle=False,
|
91 |
-
batch_size=1,
|
92 |
-
pin_memory=True,
|
93 |
-
drop_last=False,
|
94 |
-
collate_fn=collate_fn,
|
95 |
-
)
|
96 |
-
if (
|
97 |
-
"use_noise_scaled_mas" in hps.model.keys()
|
98 |
-
and hps.model.use_noise_scaled_mas is True
|
99 |
-
):
|
100 |
-
print("Using noise scaled MAS for VITS2")
|
101 |
-
mas_noise_scale_initial = 0.01
|
102 |
-
noise_scale_delta = 2e-6
|
103 |
-
else:
|
104 |
-
print("Using normal MAS for VITS1")
|
105 |
-
mas_noise_scale_initial = 0.0
|
106 |
-
noise_scale_delta = 0.0
|
107 |
-
if (
|
108 |
-
"use_duration_discriminator" in hps.model.keys()
|
109 |
-
and hps.model.use_duration_discriminator is True
|
110 |
-
):
|
111 |
-
print("Using duration discriminator for VITS2")
|
112 |
-
net_dur_disc = DurationDiscriminator(
|
113 |
-
hps.model.hidden_channels,
|
114 |
-
hps.model.hidden_channels,
|
115 |
-
3,
|
116 |
-
0.1,
|
117 |
-
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
|
118 |
-
).cuda(rank)
|
119 |
-
if (
|
120 |
-
"use_spk_conditioned_encoder" in hps.model.keys()
|
121 |
-
and hps.model.use_spk_conditioned_encoder is True
|
122 |
-
):
|
123 |
-
if hps.data.n_speakers == 0:
|
124 |
-
raise ValueError(
|
125 |
-
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
|
126 |
-
)
|
127 |
-
else:
|
128 |
-
print("Using normal encoder for VITS1")
|
129 |
-
|
130 |
-
net_g = SynthesizerTrn(
|
131 |
-
len(symbols),
|
132 |
-
hps.data.filter_length // 2 + 1,
|
133 |
-
hps.train.segment_size // hps.data.hop_length,
|
134 |
-
n_speakers=hps.data.n_speakers,
|
135 |
-
mas_noise_scale_initial=mas_noise_scale_initial,
|
136 |
-
noise_scale_delta=noise_scale_delta,
|
137 |
-
**hps.model,
|
138 |
-
).cuda(rank)
|
139 |
-
|
140 |
-
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
141 |
-
optim_g = torch.optim.AdamW(
|
142 |
-
filter(lambda p: p.requires_grad, net_g.parameters()),
|
143 |
-
hps.train.learning_rate,
|
144 |
-
betas=hps.train.betas,
|
145 |
-
eps=hps.train.eps,
|
146 |
-
)
|
147 |
-
optim_d = torch.optim.AdamW(
|
148 |
-
net_d.parameters(),
|
149 |
-
hps.train.learning_rate,
|
150 |
-
betas=hps.train.betas,
|
151 |
-
eps=hps.train.eps,
|
152 |
-
)
|
153 |
-
if net_dur_disc is not None:
|
154 |
-
optim_dur_disc = torch.optim.AdamW(
|
155 |
-
net_dur_disc.parameters(),
|
156 |
-
hps.train.learning_rate,
|
157 |
-
betas=hps.train.betas,
|
158 |
-
eps=hps.train.eps,
|
159 |
-
)
|
160 |
-
else:
|
161 |
-
optim_dur_disc = None
|
162 |
-
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
163 |
-
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
164 |
-
if net_dur_disc is not None:
|
165 |
-
net_dur_disc = DDP(net_dur_disc, device_ids=[rank], find_unused_parameters=True)
|
166 |
-
try:
|
167 |
-
if net_dur_disc is not None:
|
168 |
-
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
|
169 |
-
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
|
170 |
-
net_dur_disc,
|
171 |
-
optim_dur_disc,
|
172 |
-
skip_optimizer=hps.train.skip_optimizer
|
173 |
-
if "skip_optimizer" in hps.train
|
174 |
-
else True,
|
175 |
-
)
|
176 |
-
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
|
177 |
-
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
|
178 |
-
net_g,
|
179 |
-
optim_g,
|
180 |
-
skip_optimizer=hps.train.skip_optimizer
|
181 |
-
if "skip_optimizer" in hps.train
|
182 |
-
else True,
|
183 |
-
)
|
184 |
-
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
|
185 |
-
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
|
186 |
-
net_d,
|
187 |
-
optim_d,
|
188 |
-
skip_optimizer=hps.train.skip_optimizer
|
189 |
-
if "skip_optimizer" in hps.train
|
190 |
-
else True,
|
191 |
-
)
|
192 |
-
if not optim_g.param_groups[0].get("initial_lr"):
|
193 |
-
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
|
194 |
-
if not optim_d.param_groups[0].get("initial_lr"):
|
195 |
-
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
|
196 |
-
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
197 |
-
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
198 |
-
|
199 |
-
epoch_str = max(epoch_str, 1)
|
200 |
-
global_step = (epoch_str - 1) * len(train_loader)
|
201 |
-
except Exception as e:
|
202 |
-
print(e)
|
203 |
-
epoch_str = 1
|
204 |
-
global_step = 0
|
205 |
-
|
206 |
-
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
|
207 |
-
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
208 |
-
)
|
209 |
-
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
|
210 |
-
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
211 |
-
)
|
212 |
-
if net_dur_disc is not None:
|
213 |
-
if not optim_dur_disc.param_groups[0].get("initial_lr"):
|
214 |
-
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
|
215 |
-
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
|
216 |
-
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
|
217 |
-
)
|
218 |
-
else:
|
219 |
-
scheduler_dur_disc = None
|
220 |
-
scaler = GradScaler(enabled=hps.train.fp16_run)
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
for epoch in range(epoch_str, hps.train.epochs + 1):
|
226 |
-
if rank == 0:
|
227 |
-
train_and_evaluate(
|
228 |
-
rank,
|
229 |
-
epoch,
|
230 |
-
hps,
|
231 |
-
[net_g, net_d, net_dur_disc],
|
232 |
-
[optim_g, optim_d, optim_dur_disc],
|
233 |
-
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
234 |
-
scaler,
|
235 |
-
[train_loader, eval_loader],
|
236 |
-
logger,
|
237 |
-
[writer, writer_eval],
|
238 |
-
)
|
239 |
-
else:
|
240 |
-
train_and_evaluate(
|
241 |
-
rank,
|
242 |
-
epoch,
|
243 |
-
hps,
|
244 |
-
[net_g, net_d, net_dur_disc],
|
245 |
-
[optim_g, optim_d, optim_dur_disc],
|
246 |
-
[scheduler_g, scheduler_d, scheduler_dur_disc],
|
247 |
-
scaler,
|
248 |
-
[train_loader, None],
|
249 |
-
None,
|
250 |
-
None,
|
251 |
-
)
|
252 |
-
scheduler_g.step()
|
253 |
-
scheduler_d.step()
|
254 |
-
if net_dur_disc is not None:
|
255 |
-
scheduler_dur_disc.step()
|
256 |
-
|
257 |
-
|
258 |
-
__ACCUMULATION_STEP__ = 6
|
259 |
-
__CURRENT_ACCUMULATION_STEP__ = 0
|
260 |
-
|
261 |
-
def train_and_evaluate(
|
262 |
-
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers
|
263 |
-
):
|
264 |
-
global __ACCUMULATION_STEP__
|
265 |
-
global __CURRENT_ACCUMULATION_STEP__
|
266 |
-
net_g, net_d, net_dur_disc = nets
|
267 |
-
optim_g, optim_d, optim_dur_disc = optims
|
268 |
-
scheduler_g, scheduler_d, scheduler_dur_disc = schedulers
|
269 |
-
train_loader, eval_loader = loaders
|
270 |
-
if writers is not None:
|
271 |
-
writer, writer_eval = writers
|
272 |
-
|
273 |
-
train_loader.batch_sampler.set_epoch(epoch)
|
274 |
-
global global_step
|
275 |
-
|
276 |
-
net_g.train()
|
277 |
-
net_d.train()
|
278 |
-
if net_dur_disc is not None:
|
279 |
-
net_dur_disc.train()
|
280 |
-
for batch_idx, (
|
281 |
-
x,
|
282 |
-
x_lengths,
|
283 |
-
spec,
|
284 |
-
spec_lengths,
|
285 |
-
y,
|
286 |
-
y_lengths,
|
287 |
-
speakers,
|
288 |
-
tone,
|
289 |
-
language,
|
290 |
-
bert,
|
291 |
-
ja_bert,
|
292 |
-
) in tqdm(enumerate(train_loader)):
|
293 |
-
if net_g.module.use_noise_scaled_mas:
|
294 |
-
current_mas_noise_scale = (
|
295 |
-
net_g.module.mas_noise_scale_initial
|
296 |
-
- net_g.module.noise_scale_delta * global_step
|
297 |
-
)
|
298 |
-
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
|
299 |
-
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(
|
300 |
-
rank, non_blocking=True
|
301 |
-
)
|
302 |
-
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
303 |
-
rank, non_blocking=True
|
304 |
-
)
|
305 |
-
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
306 |
-
rank, non_blocking=True
|
307 |
-
)
|
308 |
-
speakers = speakers.cuda(rank, non_blocking=True)
|
309 |
-
tone = tone.cuda(rank, non_blocking=True)
|
310 |
-
language = language.cuda(rank, non_blocking=True)
|
311 |
-
bert = bert.cuda(rank, non_blocking=True)
|
312 |
-
ja_bert = ja_bert.cuda(rank, non_blocking=True)
|
313 |
-
|
314 |
-
with autocast(enabled=hps.train.fp16_run):
|
315 |
-
(
|
316 |
-
y_hat,
|
317 |
-
l_length,
|
318 |
-
attn,
|
319 |
-
ids_slice,
|
320 |
-
x_mask,
|
321 |
-
z_mask,
|
322 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
323 |
-
(hidden_x, logw, logw_),
|
324 |
-
) = net_g(
|
325 |
-
x,
|
326 |
-
x_lengths,
|
327 |
-
spec,
|
328 |
-
spec_lengths,
|
329 |
-
speakers,
|
330 |
-
tone,
|
331 |
-
language,
|
332 |
-
bert,
|
333 |
-
ja_bert,
|
334 |
-
)
|
335 |
-
mel = spec_to_mel_torch(
|
336 |
-
spec,
|
337 |
-
hps.data.filter_length,
|
338 |
-
hps.data.n_mel_channels,
|
339 |
-
hps.data.sampling_rate,
|
340 |
-
hps.data.mel_fmin,
|
341 |
-
hps.data.mel_fmax,
|
342 |
-
)
|
343 |
-
y_mel = commons.slice_segments(
|
344 |
-
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
|
345 |
-
)
|
346 |
-
y_hat_mel = mel_spectrogram_torch(
|
347 |
-
y_hat.squeeze(1),
|
348 |
-
hps.data.filter_length,
|
349 |
-
hps.data.n_mel_channels,
|
350 |
-
hps.data.sampling_rate,
|
351 |
-
hps.data.hop_length,
|
352 |
-
hps.data.win_length,
|
353 |
-
hps.data.mel_fmin,
|
354 |
-
hps.data.mel_fmax,
|
355 |
-
)
|
356 |
-
|
357 |
-
y = commons.slice_segments(
|
358 |
-
y, ids_slice * hps.data.hop_length, hps.train.segment_size
|
359 |
-
) # slice
|
360 |
-
|
361 |
-
# Discriminator
|
362 |
-
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
363 |
-
with autocast(enabled=False):
|
364 |
-
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
|
365 |
-
y_d_hat_r, y_d_hat_g
|
366 |
-
)
|
367 |
-
loss_disc_all = loss_disc
|
368 |
-
if net_dur_disc is not None:
|
369 |
-
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
|
370 |
-
hidden_x.detach(), x_mask.detach(), logw.detach(), logw_.detach()
|
371 |
-
)
|
372 |
-
with autocast(enabled=False):
|
373 |
-
# TODO: I think need to mean using the mask, but for now, just mean all
|
374 |
-
(
|
375 |
-
loss_dur_disc,
|
376 |
-
losses_dur_disc_r,
|
377 |
-
losses_dur_disc_g,
|
378 |
-
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
|
379 |
-
loss_dur_disc_all = loss_dur_disc
|
380 |
-
optim_dur_disc.zero_grad()
|
381 |
-
scaler.scale(loss_dur_disc_all).backward()
|
382 |
-
scaler.unscale_(optim_dur_disc)
|
383 |
-
commons.clip_grad_value_(net_dur_disc.parameters(), None)
|
384 |
-
scaler.step(optim_dur_disc)
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
scaler.scale(loss_disc_all/__ACCUMULATION_STEP__).backward()
|
389 |
-
__CURRENT_ACCUMULATION_STEP__ += 1
|
390 |
-
|
391 |
-
if __CURRENT_ACCUMULATION_STEP__ == __ACCUMULATION_STEP__:
|
392 |
-
__CURRENT_ACCUMULATION_STEP__ = 0
|
393 |
-
|
394 |
-
scaler.unscale_(optim_d)
|
395 |
-
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
|
396 |
-
scaler.step(optim_d)
|
397 |
-
optim_d.zero_grad()
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
with autocast(enabled=hps.train.fp16_run):
|
403 |
-
# Generator
|
404 |
-
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
405 |
-
if net_dur_disc is not None:
|
406 |
-
y_dur_hat_r, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw, logw_)
|
407 |
-
with autocast(enabled=False):
|
408 |
-
loss_dur = torch.sum(l_length.float())
|
409 |
-
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
410 |
-
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
411 |
-
|
412 |
-
loss_fm = feature_loss(fmap_r, fmap_g)
|
413 |
-
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
414 |
-
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
415 |
-
if net_dur_disc is not None:
|
416 |
-
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
|
417 |
-
loss_gen_all += loss_dur_gen
|
418 |
-
|
419 |
-
|
420 |
-
scaler.scale(loss_gen_all/__ACCUMULATION_STEP__).backward()
|
421 |
-
if __CURRENT_ACCUMULATION_STEP__ == __ACCUMULATION_STEP__:
|
422 |
-
__CURRENT_ACCUMULATION_STEP__ = 0
|
423 |
-
|
424 |
-
scaler.unscale_(optim_g)
|
425 |
-
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
|
426 |
-
scaler.step(optim_g)
|
427 |
-
scaler.update()
|
428 |
-
optim_g.zero_grad()
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
if rank == 0:
|
434 |
-
if (global_step-1) % hps.train.log_interval == 0:
|
435 |
-
lr = optim_g.param_groups[0]["lr"]
|
436 |
-
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
437 |
-
logger.info(
|
438 |
-
"Train Epoch: {} [{:.0f}%]".format(
|
439 |
-
epoch, 100.0 * batch_idx / len(train_loader)
|
440 |
-
)
|
441 |
-
)
|
442 |
-
logger.info([x.item() for x in losses] + [global_step, lr])
|
443 |
-
|
444 |
-
scalar_dict = {
|
445 |
-
"loss/g/total": loss_gen_all,
|
446 |
-
"loss/d/total": loss_disc_all,
|
447 |
-
"learning_rate": lr,
|
448 |
-
"grad_norm_d": grad_norm_d,
|
449 |
-
"grad_norm_g": grad_norm_g,
|
450 |
-
}
|
451 |
-
scalar_dict.update(
|
452 |
-
{
|
453 |
-
"loss/g/fm": loss_fm,
|
454 |
-
"loss/g/mel": loss_mel,
|
455 |
-
"loss/g/dur": loss_dur,
|
456 |
-
"loss/g/kl": loss_kl,
|
457 |
-
}
|
458 |
-
)
|
459 |
-
scalar_dict.update(
|
460 |
-
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
|
461 |
-
)
|
462 |
-
scalar_dict.update(
|
463 |
-
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
|
464 |
-
)
|
465 |
-
scalar_dict.update(
|
466 |
-
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
|
467 |
-
)
|
468 |
-
|
469 |
-
image_dict = {
|
470 |
-
"slice/mel_org": utils.plot_spectrogram_to_numpy(
|
471 |
-
y_mel[0].data.cpu().numpy()
|
472 |
-
),
|
473 |
-
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
|
474 |
-
y_hat_mel[0].data.cpu().numpy()
|
475 |
-
),
|
476 |
-
"all/mel": utils.plot_spectrogram_to_numpy(
|
477 |
-
mel[0].data.cpu().numpy()
|
478 |
-
),
|
479 |
-
"all/attn": utils.plot_alignment_to_numpy(
|
480 |
-
attn[0, 0].data.cpu().numpy()
|
481 |
-
),
|
482 |
-
}
|
483 |
-
utils.summarize(
|
484 |
-
writer=writer,
|
485 |
-
global_step=global_step,
|
486 |
-
images=image_dict,
|
487 |
-
scalars=scalar_dict,
|
488 |
-
)
|
489 |
-
|
490 |
-
if (global_step-1) % hps.train.eval_interval == 0:
|
491 |
-
evaluate(hps, net_g, eval_loader, writer_eval)
|
492 |
-
utils.save_checkpoint(
|
493 |
-
net_g,
|
494 |
-
optim_g,
|
495 |
-
hps.train.learning_rate,
|
496 |
-
epoch,
|
497 |
-
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
|
498 |
-
)
|
499 |
-
utils.save_checkpoint(
|
500 |
-
net_d,
|
501 |
-
optim_d,
|
502 |
-
hps.train.learning_rate,
|
503 |
-
epoch,
|
504 |
-
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
|
505 |
-
)
|
506 |
-
if net_dur_disc is not None:
|
507 |
-
utils.save_checkpoint(
|
508 |
-
net_dur_disc,
|
509 |
-
optim_dur_disc,
|
510 |
-
hps.train.learning_rate,
|
511 |
-
epoch,
|
512 |
-
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
|
513 |
-
)
|
514 |
-
keep_ckpts = getattr(hps.train, "keep_ckpts", 5)
|
515 |
-
if keep_ckpts > 0:
|
516 |
-
utils.clean_checkpoints(
|
517 |
-
path_to_models=hps.model_dir,
|
518 |
-
n_ckpts_to_keep=keep_ckpts,
|
519 |
-
sort_by_time=True,
|
520 |
-
)
|
521 |
-
|
522 |
-
global_step += 1
|
523 |
-
|
524 |
-
if rank == 0:
|
525 |
-
logger.info("====> Epoch: {} ===>{}".format(epoch, __CURRENT_ACCUMULATION_STEP__))
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
def evaluate(hps, generator, eval_loader, writer_eval):
|
530 |
-
generator.eval()
|
531 |
-
image_dict = {}
|
532 |
-
audio_dict = {}
|
533 |
-
print("Evaluating ...")
|
534 |
-
with torch.no_grad():
|
535 |
-
for batch_idx, (
|
536 |
-
x,
|
537 |
-
x_lengths,
|
538 |
-
spec,
|
539 |
-
spec_lengths,
|
540 |
-
y,
|
541 |
-
y_lengths,
|
542 |
-
speakers,
|
543 |
-
tone,
|
544 |
-
language,
|
545 |
-
bert,
|
546 |
-
ja_bert,
|
547 |
-
) in enumerate(eval_loader):
|
548 |
-
x, x_lengths = x.cuda(), x_lengths.cuda()
|
549 |
-
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
550 |
-
y, y_lengths = y.cuda(), y_lengths.cuda()
|
551 |
-
speakers = speakers.cuda()
|
552 |
-
bert = bert.cuda()
|
553 |
-
ja_bert = ja_bert.cuda()
|
554 |
-
tone = tone.cuda()
|
555 |
-
language = language.cuda()
|
556 |
-
for use_sdp in [True, False]:
|
557 |
-
y_hat, attn, mask, *_ = generator.module.infer(
|
558 |
-
x,
|
559 |
-
x_lengths,
|
560 |
-
speakers,
|
561 |
-
tone,
|
562 |
-
language,
|
563 |
-
bert,
|
564 |
-
ja_bert,
|
565 |
-
y=spec,
|
566 |
-
max_len=1000,
|
567 |
-
sdp_ratio=0.0 if not use_sdp else 1.0,
|
568 |
-
)
|
569 |
-
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
570 |
-
|
571 |
-
mel = spec_to_mel_torch(
|
572 |
-
spec,
|
573 |
-
hps.data.filter_length,
|
574 |
-
hps.data.n_mel_channels,
|
575 |
-
hps.data.sampling_rate,
|
576 |
-
hps.data.mel_fmin,
|
577 |
-
hps.data.mel_fmax,
|
578 |
-
)
|
579 |
-
y_hat_mel = mel_spectrogram_torch(
|
580 |
-
y_hat.squeeze(1).float(),
|
581 |
-
hps.data.filter_length,
|
582 |
-
hps.data.n_mel_channels,
|
583 |
-
hps.data.sampling_rate,
|
584 |
-
hps.data.hop_length,
|
585 |
-
hps.data.win_length,
|
586 |
-
hps.data.mel_fmin,
|
587 |
-
hps.data.mel_fmax,
|
588 |
-
)
|
589 |
-
image_dict.update(
|
590 |
-
{
|
591 |
-
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
592 |
-
y_hat_mel[0].cpu().numpy()
|
593 |
-
)
|
594 |
-
}
|
595 |
-
)
|
596 |
-
audio_dict.update(
|
597 |
-
{
|
598 |
-
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
|
599 |
-
0, :, : y_hat_lengths[0]
|
600 |
-
]
|
601 |
-
}
|
602 |
-
)
|
603 |
-
image_dict.update(
|
604 |
-
{
|
605 |
-
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
|
606 |
-
mel[0].cpu().numpy()
|
607 |
-
)
|
608 |
-
}
|
609 |
-
)
|
610 |
-
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
|
611 |
-
|
612 |
-
utils.summarize(
|
613 |
-
writer=writer_eval,
|
614 |
-
global_step=global_step,
|
615 |
-
images=image_dict,
|
616 |
-
audios=audio_dict,
|
617 |
-
audio_sampling_rate=hps.data.sampling_rate,
|
618 |
-
)
|
619 |
-
generator.train()
|
620 |
-
|
621 |
-
|
622 |
-
if __name__ == "__main__":
|
623 |
-
run()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|