segformer_demo / app.py
zoheb's picture
Add application file
f33940c
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from PIL import Image
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
model = SegformerForSemanticSegmentation.from_pretrained("zoheb/mit-b5-finetuned-sidewalk-semantic")
def sidewalk_palette():
"""Sidewalk palette that maps each class to RGB values."""
return [
[0, 0, 0],
[216, 82, 24],
[255, 255, 0],
[125, 46, 141],
[118, 171, 47],
[161, 19, 46],
[255, 0, 0],
[0, 128, 128],
[190, 190, 0],
[0, 255, 0],
[0, 0, 255],
[170, 0, 255],
[84, 84, 0],
[84, 170, 0],
[84, 255, 0],
[170, 84, 0],
[170, 170, 0],
[170, 255, 0],
[255, 84, 0],
[255, 170, 0],
[255, 255, 0],
[33, 138, 200],
[0, 170, 127],
[0, 255, 127],
[84, 0, 127],
[84, 84, 127],
[84, 170, 127],
[84, 255, 127],
[170, 0, 127],
[170, 84, 127],
[170, 170, 127],
[170, 255, 127],
[255, 0, 127],
[255, 84, 127],
[255, 170, 127],
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
labels_list.extend(line[:-1] for line in fp)
colormap = np.asarray(sidewalk_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def main(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
# First, rescale logits to original image size
upsampled_logits = nn.functional.interpolate(
logits,
size=input_img.size[::-1], # (height, width)
mode='bilinear',
align_corners=False
)
# Second, apply argmax on the class dimension
pred_seg = upsampled_logits.argmax(dim=1)[0]
color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) # height, width, 3
palette = np.array(sidewalk_palette())
for label, color in enumerate(palette):
color_seg[pred_seg == label, :] = color
# Show image + mask
img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = img.astype(np.uint8)
return draw_plot(pred_img, pred_seg)
demo = gr.Interface(main,
gr.Image(shape=(200, 200)),
outputs=['plot'],
examples=["test.jpg"],
allow_flagging='never')
demo.launch()