|
import pickle |
|
import os |
|
import re |
|
|
|
from . import symbols |
|
from .es_phonemizer import cleaner as es_cleaner |
|
from .es_phonemizer import es_to_ipa |
|
from transformers import AutoTokenizer |
|
|
|
|
|
def distribute_phone(n_phone, n_word): |
|
phones_per_word = [0] * n_word |
|
for task in range(n_phone): |
|
min_tasks = min(phones_per_word) |
|
min_index = phones_per_word.index(min_tasks) |
|
phones_per_word[min_index] += 1 |
|
return phones_per_word |
|
|
|
def text_normalize(text): |
|
text = es_cleaner.spanish_cleaners(text) |
|
return text |
|
|
|
def post_replace_ph(ph): |
|
rep_map = { |
|
":": ",", |
|
";": ",", |
|
",": ",", |
|
"。": ".", |
|
"!": "!", |
|
"?": "?", |
|
"\n": ".", |
|
"·": ",", |
|
"、": ",", |
|
"...": "…" |
|
} |
|
if ph in rep_map.keys(): |
|
ph = rep_map[ph] |
|
if ph in symbols: |
|
return ph |
|
if ph not in symbols: |
|
ph = "UNK" |
|
return ph |
|
|
|
def refine_ph(phn): |
|
tone = 0 |
|
if re.search(r"\d$", phn): |
|
tone = int(phn[-1]) + 1 |
|
phn = phn[:-1] |
|
return phn.lower(), tone |
|
|
|
|
|
def refine_syllables(syllables): |
|
tones = [] |
|
phonemes = [] |
|
for phn_list in syllables: |
|
for i in range(len(phn_list)): |
|
phn = phn_list[i] |
|
phn, tone = refine_ph(phn) |
|
phonemes.append(phn) |
|
tones.append(tone) |
|
return phonemes, tones |
|
|
|
|
|
|
|
model_id = 'dccuchile/bert-base-spanish-wwm-uncased' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def g2p(text, pad_start_end=True, tokenized=None): |
|
if tokenized is None: |
|
tokenized = tokenizer.tokenize(text) |
|
|
|
phs = [] |
|
ph_groups = [] |
|
for t in tokenized: |
|
if not t.startswith("#"): |
|
ph_groups.append([t]) |
|
else: |
|
ph_groups[-1].append(t.replace("#", "")) |
|
|
|
phones = [] |
|
tones = [] |
|
word2ph = [] |
|
|
|
for group in ph_groups: |
|
w = "".join(group) |
|
phone_len = 0 |
|
word_len = len(group) |
|
if w == '[UNK]': |
|
phone_list = ['UNK'] |
|
else: |
|
phone_list = list(filter(lambda p: p != " ", es_to_ipa.es2ipa(w))) |
|
|
|
for ph in phone_list: |
|
phones.append(ph) |
|
tones.append(0) |
|
phone_len += 1 |
|
aaa = distribute_phone(phone_len, word_len) |
|
word2ph += aaa |
|
|
|
|
|
|
|
if pad_start_end: |
|
phones = ["_"] + phones + ["_"] |
|
tones = [0] + tones + [0] |
|
word2ph = [1] + word2ph + [1] |
|
return phones, tones, word2ph |
|
|
|
def get_bert_feature(text, word2ph, device=None): |
|
from text import spanish_bert |
|
return spanish_bert.get_bert_feature(text, word2ph, device=device) |
|
|
|
if __name__ == "__main__": |
|
text = "en nuestros tiempos estos dos pueblos ilustres empiezan a curarse, gracias sólo a la sana y vigorosa higiene de 1789." |
|
|
|
text = text_normalize(text) |
|
print(text) |
|
phones, tones, word2ph = g2p(text) |
|
bert = get_bert_feature(text, word2ph) |
|
print(phones) |
|
print(len(phones), tones, sum(word2ph), bert.shape) |
|
|
|
|
|
|