|
from __future__ import annotations
|
|
|
|
import gc
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
from controlnet_aux.util import HWC3
|
|
from diffusers import (
|
|
ControlNetModel,
|
|
DiffusionPipeline,
|
|
StableDiffusionControlNetPipeline,
|
|
UniPCMultistepScheduler,
|
|
)
|
|
|
|
from cv_utils import resize_image
|
|
from preprocessor import Preprocessor
|
|
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES
|
|
|
|
CONTROLNET_MODEL_IDS = {
|
|
"Canny": "checkpoints/canny/controlnet",
|
|
|
|
"depth": "checkpoints/depth/controlnet",
|
|
}
|
|
|
|
|
|
def download_all_controlnet_weights() -> None:
|
|
for model_id in CONTROLNET_MODEL_IDS.values():
|
|
ControlNetModel.from_pretrained(model_id)
|
|
|
|
|
|
class Model:
|
|
def __init__(self, base_model_id: str = "runwayml/stable-diffusion-v1-5", task_name: str = "Canny"):
|
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
self.base_model_id = ""
|
|
self.task_name = ""
|
|
self.pipe = self.load_pipe(base_model_id, task_name)
|
|
self.preprocessor = Preprocessor()
|
|
|
|
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline:
|
|
if (
|
|
base_model_id == self.base_model_id
|
|
and task_name == self.task_name
|
|
and hasattr(self, "pipe")
|
|
and self.pipe is not None
|
|
):
|
|
return self.pipe
|
|
model_id = CONTROLNET_MODEL_IDS[task_name]
|
|
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
|
base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16
|
|
)
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
if self.device.type == "cuda":
|
|
pipe.disable_xformers_memory_efficient_attention()
|
|
pipe.to(self.device)
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
self.base_model_id = base_model_id
|
|
self.task_name = task_name
|
|
return pipe
|
|
|
|
def set_base_model(self, base_model_id: str) -> str:
|
|
if not base_model_id or base_model_id == self.base_model_id:
|
|
return self.base_model_id
|
|
del self.pipe
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
try:
|
|
self.pipe = self.load_pipe(base_model_id, self.task_name)
|
|
except Exception:
|
|
self.pipe = self.load_pipe(self.base_model_id, self.task_name)
|
|
return self.base_model_id
|
|
|
|
def load_controlnet_weight(self, task_name: str) -> None:
|
|
if task_name == self.task_name:
|
|
return
|
|
if self.pipe is not None and hasattr(self.pipe, "controlnet"):
|
|
del self.pipe.controlnet
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
model_id = CONTROLNET_MODEL_IDS[task_name]
|
|
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16)
|
|
controlnet.to(self.device)
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
self.pipe.controlnet = controlnet
|
|
self.task_name = task_name
|
|
|
|
def get_prompt(self, prompt: str, additional_prompt: str) -> str:
|
|
if not prompt:
|
|
prompt = additional_prompt
|
|
else:
|
|
prompt = f"{prompt}, {additional_prompt}"
|
|
return prompt
|
|
|
|
@torch.autocast("cuda")
|
|
def run_pipe(
|
|
self,
|
|
prompt: str,
|
|
negative_prompt: str,
|
|
control_image: PIL.Image.Image,
|
|
num_images: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
) -> list[PIL.Image.Image]:
|
|
generator = torch.Generator().manual_seed(seed)
|
|
return self.pipe(
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
guidance_scale=guidance_scale,
|
|
num_images_per_prompt=num_images,
|
|
num_inference_steps=num_steps,
|
|
generator=generator,
|
|
image=control_image,
|
|
).images
|
|
|
|
@torch.inference_mode()
|
|
def process_canny(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
low_threshold: int,
|
|
high_threshold: int,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
self.preprocessor.load("Canny")
|
|
control_image = self.preprocessor(
|
|
image=image, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution
|
|
)
|
|
|
|
self.load_controlnet_weight("Canny")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
conditions_of_generated_imgs = [
|
|
self.preprocessor(
|
|
image=x, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution
|
|
) for x in results
|
|
]
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs
|
|
|
|
@torch.inference_mode()
|
|
def process_mlsd(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
value_threshold: float,
|
|
distance_threshold: float,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
self.preprocessor.load("MLSD")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
thr_v=value_threshold,
|
|
thr_d=distance_threshold,
|
|
)
|
|
self.load_controlnet_weight("MLSD")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_scribble(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
elif preprocessor_name == "HED":
|
|
self.preprocessor.load(preprocessor_name)
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
scribble=False,
|
|
)
|
|
elif preprocessor_name == "PidiNet":
|
|
self.preprocessor.load(preprocessor_name)
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
safe=False,
|
|
)
|
|
self.load_controlnet_weight("scribble")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_scribble_interactive(
|
|
self,
|
|
image_and_mask: dict[str, np.ndarray],
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
) -> list[PIL.Image.Image]:
|
|
if image_and_mask is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
image = image_and_mask["mask"]
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
|
|
self.load_controlnet_weight("scribble")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_softedge(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
elif preprocessor_name in ["HED", "HED safe"]:
|
|
safe = "safe" in preprocessor_name
|
|
self.preprocessor.load("HED")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
scribble=safe,
|
|
)
|
|
elif preprocessor_name in ["PidiNet", "PidiNet safe"]:
|
|
safe = "safe" in preprocessor_name
|
|
self.preprocessor.load("PidiNet")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
safe=safe,
|
|
)
|
|
else:
|
|
raise ValueError
|
|
self.load_controlnet_weight("softedge")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
conditions_of_generated_imgs = [
|
|
self.preprocessor(
|
|
image=x,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
scribble=safe,
|
|
) for x in results
|
|
]
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs
|
|
|
|
@torch.inference_mode()
|
|
def process_openpose(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
else:
|
|
self.preprocessor.load("Openpose")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
hand_and_face=True,
|
|
)
|
|
self.load_controlnet_weight("Openpose")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_segmentation(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
else:
|
|
self.preprocessor.load(preprocessor_name)
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
)
|
|
self.load_controlnet_weight("segmentation")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
self.preprocessor.load('UPerNet')
|
|
conditions_of_generated_imgs = [
|
|
self.preprocessor(
|
|
image=np.array(x),
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
) for x in results
|
|
]
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs
|
|
|
|
@torch.inference_mode()
|
|
def process_depth(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
else:
|
|
self.preprocessor.load(preprocessor_name)
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
)
|
|
self.load_controlnet_weight("depth")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
conditions_of_generated_imgs = [
|
|
self.preprocessor(
|
|
image=x,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
) for x in results
|
|
]
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs
|
|
|
|
@torch.inference_mode()
|
|
def process_normal(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
else:
|
|
self.preprocessor.load("NormalBae")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
)
|
|
self.load_controlnet_weight("NormalBae")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_lineart(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
preprocess_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name in ["None", "None (anime)"]:
|
|
image = 255 - HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
elif preprocessor_name in ["Lineart", "Lineart coarse"]:
|
|
coarse = "coarse" in preprocessor_name
|
|
self.preprocessor.load("Lineart")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
coarse=coarse,
|
|
)
|
|
elif preprocessor_name == "Lineart (anime)":
|
|
self.preprocessor.load("LineartAnime")
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
)
|
|
|
|
if "anime" in preprocessor_name:
|
|
self.load_controlnet_weight("lineart_anime")
|
|
else:
|
|
self.load_controlnet_weight("lineart")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
self.preprocessor.load("Lineart")
|
|
conditions_of_generated_imgs = [
|
|
self.preprocessor(
|
|
image=x,
|
|
image_resolution=image_resolution,
|
|
detect_resolution=preprocess_resolution,
|
|
) for x in results
|
|
]
|
|
|
|
control_image = PIL.Image.fromarray((255 - np.array(control_image)).astype(np.uint8))
|
|
conditions_of_generated_imgs = [PIL.Image.fromarray((255 - np.array(x)).astype(np.uint8)) for x in conditions_of_generated_imgs]
|
|
|
|
return [control_image] * num_images + results + conditions_of_generated_imgs
|
|
|
|
@torch.inference_mode()
|
|
def process_shuffle(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
preprocessor_name: str,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
if preprocessor_name == "None":
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
else:
|
|
self.preprocessor.load(preprocessor_name)
|
|
control_image = self.preprocessor(
|
|
image=image,
|
|
image_resolution=image_resolution,
|
|
)
|
|
self.load_controlnet_weight("shuffle")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|
|
@torch.inference_mode()
|
|
def process_ip2p(
|
|
self,
|
|
image: np.ndarray,
|
|
prompt: str,
|
|
additional_prompt: str,
|
|
negative_prompt: str,
|
|
num_images: int,
|
|
image_resolution: int,
|
|
num_steps: int,
|
|
guidance_scale: float,
|
|
seed: int,
|
|
) -> list[PIL.Image.Image]:
|
|
if image is None:
|
|
raise ValueError
|
|
if image_resolution > MAX_IMAGE_RESOLUTION:
|
|
raise ValueError
|
|
if num_images > MAX_NUM_IMAGES:
|
|
raise ValueError
|
|
|
|
image = HWC3(image)
|
|
image = resize_image(image, resolution=image_resolution)
|
|
control_image = PIL.Image.fromarray(image)
|
|
self.load_controlnet_weight("ip2p")
|
|
results = self.run_pipe(
|
|
prompt=self.get_prompt(prompt, additional_prompt),
|
|
negative_prompt=negative_prompt,
|
|
control_image=control_image,
|
|
num_images=num_images,
|
|
num_steps=num_steps,
|
|
guidance_scale=guidance_scale,
|
|
seed=seed,
|
|
)
|
|
return [control_image] + results
|
|
|