Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import numpy as np | |
import argparse | |
import datasets | |
import torch | |
from collections import defaultdict | |
from typing import List | |
from tqdm import tqdm | |
from transformers.trainer_utils import set_seed | |
''' | |
wget https://huggingface.co/datasets/haonan-li/cmmlu/resolve/main/cmmlu_v1_0_1.zip | |
mkdir data/cmmlu | |
mv cmmlu_v1_0_1.zip data/cmmlu | |
cd data/cmmlu; unzip cmmlu_v1_0_1.zip | |
cd ../../ | |
python evaluate_cmmlu.py -d data/cmmlu/ | |
''' | |
def load_models_tokenizer(args): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
return model, tokenizer | |
def format_example(line, include_answer=True): | |
example = '问题:' + line['Question'] | |
for choice in choices: | |
example += f'\n{choice}. {line[f"{choice}"]}' | |
if include_answer: | |
example += '\n答案:' + line["Answer"] + '\n\n' | |
else: | |
example += '\n答案:' | |
return example | |
def generate_few_shot_prompt(k, subject, dev_df): | |
prompt = '' | |
if k == -1: | |
k = dev_df.shape[0] | |
for i in range(k): | |
prompt += format_example( | |
dev_df.iloc[i, :], | |
include_answer=True, | |
) | |
return prompt | |
def get_logits(tokenizer, model, inputs: List[str]): | |
input_ids = tokenizer(inputs, padding=False)['input_ids'] | |
input_ids = torch.tensor(input_ids, device=model.device) | |
tokens = {'input_ids': input_ids} | |
outputs = model(input_ids)['logits'] | |
logits = outputs[:, -1, :] | |
log_probs = torch.nn.functional.softmax(logits, dim=-1) | |
return log_probs, {'tokens': tokens} | |
def eval_subject( | |
model, | |
tokenizer, | |
subject_name, | |
test_df, | |
k=5, | |
dev_df=None, | |
few_shot=False, | |
save_result_dir=None, | |
**kwargs | |
): | |
result = [] | |
score = [] | |
few_shot_prompt = generate_few_shot_prompt( | |
k, subject_name, dev_df) if few_shot else [] | |
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []} | |
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}") | |
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
question = format_example(row, include_answer=False) | |
full_prompt = few_shot_prompt + question | |
output, input_info = get_logits(tokenizer, model, [full_prompt]) | |
assert output.shape[0] == 1 | |
logits = output.flatten() | |
softval = torch.nn.functional.softmax( | |
torch.tensor( | |
[ | |
logits[tokenizer("A")['input_ids']], | |
logits[tokenizer("B")['input_ids']], | |
logits[tokenizer("C")['input_ids']], | |
logits[tokenizer("D")['input_ids']], | |
] | |
), | |
dim=0, | |
) | |
if softval.dtype in {torch.bfloat16, torch.float16}: | |
softval = softval.to(dtype=torch.float32) | |
probs = softval.detach().cpu().numpy() | |
for i, choice in enumerate(choices): | |
all_probs[f'prob_{choice}'].append(probs[i]) | |
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] | |
if 'Answer' in row: | |
correct = 1 if pred == row['Answer'] else 0 | |
score.append(correct) | |
if args.debug: print(f'{question} pred: {pred} ref: {row["Answer"]}') | |
result.append(pred) | |
if score: | |
correct_ratio = 100 * sum(score) / len(score) | |
if args.debug: print(subject_name, correct_ratio) | |
else: | |
correct_ratio = 0 | |
if save_result_dir: | |
test_df['model_output'] = result | |
for i, choice in enumerate(choices): | |
test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}']) | |
if score: | |
test_df["correctness"] = score | |
os.makedirs(save_result_dir, exist_ok=True) | |
test_df.to_csv(os.path.join( | |
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False) | |
return correct_ratio | |
def cal_cmmlu(res): | |
print('\n\n\n') | |
res = {k.split('-')[-1]:float(v) for k,v in res.items()} | |
for k, v in TASK_NAME_MAPPING.items(): | |
avg_acc = np.mean(list(map(lambda x: res[x], v))) | |
print(f"{k} acc: {avg_acc:.2f}") | |
avg_all_acc = np.mean(list(res.values())) | |
print(f"AVERAGE acc: {avg_all_acc:.2f}") | |
subcategories = { | |
"agronomy": ['other'], | |
"anatomy": ['biology'], | |
"ancient_chinese": ['linguistics','china specific'], | |
"arts": ['arts'], | |
"astronomy": ['physics'], | |
"business_ethics": ['business'], | |
"chinese_civil_service_exam": ['politics','china specific'], | |
"chinese_driving_rule": ['other','china specific'], | |
"chinese_food_culture": ['culture','china specific'], | |
"chinese_foreign_policy": ['politics','china specific'], | |
"chinese_history":['history','china specific'], | |
"chinese_literature": ['literature','china specific'], | |
"chinese_teacher_qualification": ['education','china specific'], | |
"college_actuarial_science":['math'], | |
"college_education":['education'], | |
"college_engineering_hydrology": ['engineering'], | |
"college_law": ['law'], | |
"college_mathematics": ['math'], | |
"college_medical_statistics":['statistics'], | |
"clinical_knowledge": ['other'], | |
"college_medicine": ['other'], | |
"computer_science": ['computer science'], | |
"computer_security": ['other'], | |
"conceptual_physics": ['physics'], | |
"construction_project_management": ['other','china specific'], | |
"economics": ['economics'], | |
"education": ['education'], | |
"elementary_chinese":['linguistics','china specific'], | |
"elementary_commonsense":['other','china specific'], | |
"elementary_information_and_technology": ['other'], | |
"electrical_engineering": ['engineering'], | |
"elementary_mathematics": ['math'], | |
"ethnology": ['culture','china specific'], | |
"food_science": ['other'], | |
"genetics": ['biology'], | |
"global_facts": ['global'], | |
"high_school_biology": ['biology'], | |
"high_school_chemistry": ['chemistry'], | |
"high_school_geography": ['geography'], | |
"high_school_mathematics": ['math'], | |
"high_school_physics": ['physics'], | |
"high_school_politics": ['politics','china specific'], | |
"human_sexuality": ['other'], | |
"international_law": ['law'], | |
"journalism": ['sociology'], | |
"jurisprudence": ['law'], | |
"legal_and_moral_basis": ['other'], | |
"logical": ['philosophy'], | |
"machine_learning": ['computer science'], | |
"management": ['business'], | |
"marketing": ['business'], | |
"marxist_theory": ['philosophy'], | |
"modern_chinese": ['linguistics','china specific'], | |
"nutrition": ['other'], | |
"philosophy": ['philosophy'], | |
"professional_accounting": ['business'], | |
"professional_law": ['law'], | |
"professional_medicine": ['other'], | |
"professional_psychology": ['psychology'], | |
"public_relations": ['politics'], | |
"security_study": ['politics'], | |
"sociology": ['culture'], | |
"sports_science": ['other'], | |
"traditional_chinese_medicine": ['other','china specific'], | |
"virology": ['biology'], | |
"world_history":['history'], | |
"world_religions": ['global'], | |
} | |
categories = { | |
"STEM": ["physics", "chemistry", "biology", "computer science", "math", "engineering", "statistics"], | |
"Humanities": ["history", "philosophy", "law", "arts", "literature", "global"], | |
"Social Science": ['linguistics',"business", "politics", "culture", "economics", "geography", "psychology", "education", "sociology"], | |
"Other":["other"], | |
"China specific": ["china specific"], | |
} | |
TASK_NAME_MAPPING = defaultdict(list) | |
for k,v in categories.items(): | |
for subject, subcat in subcategories.items(): | |
for c in subcat: | |
if c in v: | |
TASK_NAME_MAPPING[k].append(subject) | |
choices = ["A", "B", "C", "D"] | |
def main(args): | |
model, tokenizer = load_models_tokenizer(args) | |
test_result = {} | |
for subject_name in tqdm(subcategories.keys()): | |
dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}.csv') | |
test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}.csv') | |
dev_df = pd.read_csv(dev_file_path) | |
test_df = pd.read_csv(test_file_path) | |
score = eval_subject(model, tokenizer, subject_name, dev_df=dev_df, test_df=test_df, k=5, few_shot=True, | |
save_result_dir=f"outs/cmmlu_eval_result") | |
test_result[subject_name] = score | |
cal_cmmlu(test_result) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Test HF checkpoint.') | |
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B") | |
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') | |
"""Provide extra arguments required for tasks.""" | |
group = parser.add_argument_group(title='Evaluation options') | |
group.add_argument('-d', '--eval_data_path', type=str, required=True, | |
help='Path to eval data') | |
group.add_argument("--max-seq-len", type=int, default=2048, | |
help='Size of the output generated text.') | |
group.add_argument("--debug", action='store_true', default=False, | |
help='Print infos.') | |
args = parser.parse_args() | |
set_seed(args.seed) | |
main(args) | |