Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import numpy as np | |
import argparse | |
import datasets | |
import torch | |
import re | |
from thefuzz import process | |
from typing import List | |
from tqdm import tqdm | |
from transformers.trainer_utils import set_seed | |
''' | |
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip | |
mkdir data/ceval | |
mv ceval-exam.zip data/ceval | |
cd data/ceval; unzip ceval-exam.zip | |
cd ../../ | |
pip install thefuzz | |
python eval/evaluate_chat_ceval.py -d data/ceval | |
''' | |
def load_models_tokenizer(args): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True, bf16=True, use_flash_attn=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model.generation_config.do_sample = False # use greedy decoding | |
return model, tokenizer | |
def process_before_extraction(gen, question, choice_dict): | |
# Example Prompt: | |
# 关于传输层的面向连接服务的特性是____。 | |
# A. 既不保证可靠,也不保证按序交付 | |
# B. 不保证可靠,但保证按序交付 | |
# C. 保证可靠,但不保证按序交付 | |
# D. 既保证可靠,也保证按序交付 | |
# Example Model Output: | |
# 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付 | |
# Processed Output: | |
# 答案是D | |
question_split = question.rstrip("。").split("。")[-1].split("_") | |
# replacing the question | |
if len(question_split[0].strip()) > 4: | |
gen = gen.replace(question_split[0], "答案是") | |
if len(question_split[-1].strip()) > 4: | |
gen = gen.replace(question_split[-1], "") | |
# replace the choice by letter in the generated sentence | |
# from longest one to shortest one | |
for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True): | |
gen = gen.replace(val.rstrip("。"), key) | |
return gen | |
def count_substr(gen, pattern): | |
return len(re.findall(pattern, gen)) | |
def extract_choice(gen, prompt, choice_list): | |
# 答案是A | 选项是A | 应该选A选项 | |
res = re.search(r"(?:(?:选|选择|选定)|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|为|:|:|】))[^ABCD]{0,10}?(?:是|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$)", gen) | |
# A选项正确 | A选项符合题意 | |
if res is None: | |
res = re.search(r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对|符合))[^ABCD]{0,4}?(?:正确|对|符合)", gen) | |
# 直接输出 A | |
if res is None: | |
res = re.search(r"^(A|B|C|D)(?:。|\.|,|,|.|$)", gen) | |
# 获取第一个出现的字母 | |
if res is None: | |
res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen) | |
if res is None: | |
return choices[choice_list.index(process.extractOne(gen, choice_list)[0])] | |
else: | |
return res.group(1) | |
def format_example(line): | |
example = line['question'] + "\n\n" | |
for choice in choices: | |
example += f'{choice}. {line[f"{choice}"]}\n' | |
return example | |
def extract_answer(response, row): | |
prompt = row['question'] | |
gen = process_before_extraction(response, prompt, {choice: row[choice] for choice in choices}) | |
if not isinstance(prompt, str): | |
prompt = prompt[0] | |
pred = extract_choice(gen, prompt, [row[choice] for choice in choices]) | |
return pred | |
def eval_subject( | |
model, | |
tokenizer, | |
subject_name, | |
test_df, | |
save_result_dir=None, | |
overwrite=False, | |
**kwargs | |
): | |
result_path = os.path.join(save_result_dir, f'{subject_name}_result.csv') | |
if not overwrite and os.path.exists(result_path): | |
print(f"{result_path} existed, skip!") | |
score = [] | |
for (_, datarow), (_, resultrow) in zip(test_df.iterrows(), pd.read_csv(result_path).iterrows()): | |
pred = extract_answer(resultrow['model_response'], datarow) | |
correct = 1 if pred == datarow['answer'] else 0 | |
score.append(correct) | |
correct_ratio = 100 * sum(score) / len(score) | |
return correct_ratio | |
responses = [] | |
result = [] | |
score = [] | |
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
question = format_example(row) | |
response, history = model.chat( | |
tokenizer, | |
question, | |
history=None, | |
) | |
print(question) | |
print(response) | |
pred = extract_answer(response, row) | |
print(pred) | |
print("======================") | |
if 'answer' in row: | |
correct = 1 if pred == row['answer'] else 0 | |
score.append(correct) | |
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}') | |
responses.append(response) | |
result.append(pred) | |
if score: | |
correct_ratio = 100 * sum(score) / len(score) | |
if args.debug: print(subject_name, correct_ratio) | |
else: | |
correct_ratio = 0 | |
if save_result_dir: | |
test_df['model_response'] = responses | |
test_df['model_output'] = result | |
if score: | |
test_df["correctness"] = score | |
os.makedirs(save_result_dir, exist_ok=True) | |
test_df.to_csv(result_path, encoding="utf-8", index=False) | |
return correct_ratio | |
def cal_ceval(res): | |
acc_sum_dict = dict() | |
acc_norm_sum_dict = dict() | |
cnt_dict = dict() | |
acc_sum = 0. | |
cnt = 0 | |
hard_cnt = 0 | |
hard_acc_sum = 0. | |
for tt in res.keys(): | |
name = tt.split('-')[-1] | |
acc_sum += float(res[tt]) | |
cnt += 1 | |
class_ = TASK_NAME_MAPPING[name][2] | |
if class_ not in acc_sum_dict: | |
acc_sum_dict[class_] = 0. | |
acc_norm_sum_dict[class_] = 0. | |
cnt_dict[class_] = 0. | |
if name in hard_list: | |
hard_cnt += 1 | |
hard_acc_sum += float(res[tt]) | |
acc_sum_dict[class_] += float(res[tt]) | |
cnt_dict[class_] += 1 | |
print('\n\n\n') | |
for k in ['STEM', 'Social Science', 'Humanities', 'Other']: | |
if k in cnt_dict: | |
print('%s acc: %.2f ' % ( | |
k, acc_sum_dict[k] / cnt_dict[k])) | |
if hard_cnt > 0: | |
print('Hard acc:%.2f ' % (hard_acc_sum / hard_cnt)) | |
print('AVERAGE acc:%.2f ' % (acc_sum / cnt)) | |
TASK_NAME_MAPPING = { | |
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"], | |
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"], | |
"computer_architecture": ["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"], | |
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"], | |
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"], | |
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"], | |
"advanced_mathematics": ["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"], | |
"probability_and_statistics": ["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"], | |
"discrete_mathematics": ["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"], | |
"electrical_engineer": ["Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM"], | |
"metrology_engineer": ["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"], | |
"high_school_mathematics": ["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"], | |
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"], | |
"high_school_chemistry": ["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"], | |
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"], | |
"middle_school_mathematics": ["Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"], | |
"middle_school_biology": ["Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"], | |
"middle_school_physics": ["Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"], | |
"middle_school_chemistry": ["Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"], | |
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"], | |
"college_economics": ["College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"], | |
"business_administration": ["Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"], | |
"marxism": ["Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science"], | |
"mao_zedong_thought": ["Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science"], | |
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"], | |
"teacher_qualification": ["Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"], | |
"high_school_politics": ["High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"], | |
"high_school_geography": ["High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"], | |
"middle_school_politics": ["Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"], | |
"middle_school_geography": ["Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"], | |
"modern_chinese_history": ["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"], | |
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities"], | |
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"], | |
"law": ["Law", "\u6cd5\u5b66", "Humanities"], | |
"chinese_language_and_literature": ["Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"], | |
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"], | |
"professional_tour_guide": ["Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"], | |
"legal_professional": ["Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities"], | |
"high_school_chinese": ["High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"], | |
"high_school_history": ["High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"], | |
"middle_school_history": ["Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"], | |
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"], | |
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"], | |
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"], | |
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"], | |
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"], | |
"urban_and_rural_planner": ["Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"], | |
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"], | |
"fire_engineer": ["Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"], | |
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"], | |
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"], | |
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"] | |
} | |
hard_list = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_physics', 'college_chemistry', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry'] | |
choices = ["A", "B", "C", "D"] | |
def main(args): | |
print("loading model weights") | |
if args.checkpoint_path: | |
model, tokenizer = load_models_tokenizer(args) | |
else: | |
model, tokenizer = None, None | |
print("model loaded") | |
dev_result = {} | |
for subject_name in tqdm(TASK_NAME_MAPPING.keys()): | |
val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv') | |
# dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv') | |
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') | |
val_df = pd.read_csv(val_file_path) | |
# dev_df = pd.read_csv(dev_file_path) | |
# test_df = pd.read_csv(test_file_path) | |
score = eval_subject(model, tokenizer, subject_name, val_df, | |
save_result_dir=f"outs_chat/ceval_eval_result", overwrite=args.overwrite) | |
dev_result[subject_name] = score | |
cal_ceval(dev_result) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Test HF checkpoint.') | |
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B-Chat") | |
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') | |
"""Provide extra arguments required for tasks.""" | |
group = parser.add_argument_group(title='Evaluation options') | |
group.add_argument('-d', '--eval_data_path', type=str, required=True, | |
help='Path to eval data') | |
group.add_argument("--debug", action='store_true', default=False, | |
help='Print infos.') | |
group.add_argument("--overwrite", action='store_true', default=False, | |
help='Overwrite existed results') | |
args = parser.parse_args() | |
set_seed(args.seed) | |
main(args) |