Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import numpy as np | |
import argparse | |
import datasets | |
import torch | |
from typing import List | |
from tqdm import tqdm | |
from transformers.trainer_utils import set_seed | |
''' | |
wget https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval-exam.zip | |
mkdir data/ceval | |
mv ceval-exam.zip data/ceval | |
cd data/ceval; unzip ceval-exam.zip | |
cd ../../ | |
python evaluate_ceval.py -d data/ceval/ | |
''' | |
def load_models_tokenizer(args): | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True) | |
return model, tokenizer | |
def format_example(line, include_answer=True): | |
example = '问题:' + line['question'] | |
for choice in choices: | |
example += f'\n{choice}. {line[f"{choice}"]}' | |
if include_answer: | |
example += '\n答案:' + line["answer"] + '\n\n' | |
else: | |
example += '\n答案:' | |
return example | |
def generate_few_shot_prompt(k, subject, dev_df): | |
prompt = '' | |
if k == -1: | |
k = dev_df.shape[0] | |
for i in range(k): | |
prompt += format_example( | |
dev_df.iloc[i, :], | |
include_answer=True, | |
) | |
return prompt | |
def get_logits(tokenizer, model, inputs: List[str]): | |
input_ids = tokenizer(inputs, padding=False)['input_ids'] | |
input_ids = torch.tensor(input_ids, device=model.device) | |
tokens = {'input_ids': input_ids} | |
outputs = model(input_ids)['logits'] | |
logits = outputs[:, -1, :] | |
log_probs = torch.nn.functional.softmax(logits, dim=-1) | |
return log_probs, {'tokens': tokens} | |
def eval_subject( | |
model, | |
tokenizer, | |
subject_name, | |
test_df, | |
k=5, | |
dev_df=None, | |
few_shot=False, | |
save_result_dir=None, | |
**kwargs | |
): | |
result = [] | |
score = [] | |
few_shot_prompt = generate_few_shot_prompt( | |
k, subject_name, dev_df) if few_shot else '' | |
all_probs = {'prob_A': [], 'prob_B': [], 'prob_C': [], 'prob_D': []} | |
if args.debug: print(f"few_shot_prompt: {few_shot_prompt}") | |
for _, row in tqdm(test_df.iterrows(), total=len(test_df)): | |
question = format_example(row, include_answer=False) | |
full_prompt = few_shot_prompt + question | |
output, input_info = get_logits(tokenizer, model, [full_prompt]) | |
assert output.shape[0] == 1 | |
logits = output.flatten() | |
softval = torch.nn.functional.softmax( | |
torch.tensor( | |
[ | |
logits[tokenizer("A")['input_ids']], | |
logits[tokenizer("B")['input_ids']], | |
logits[tokenizer("C")['input_ids']], | |
logits[tokenizer("D")['input_ids']], | |
] | |
), | |
dim=0, | |
) | |
if softval.dtype in {torch.bfloat16, torch.float16}: | |
softval = softval.to(dtype=torch.float32) | |
probs = softval.detach().cpu().numpy() | |
for i, choice in enumerate(choices): | |
all_probs[f'prob_{choice}'].append(probs[i]) | |
pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)] | |
if 'answer' in row: | |
correct = 1 if pred == row['answer'] else 0 | |
score.append(correct) | |
if args.debug: print(f'{question} pred: {pred} ref: {row["answer"]}') | |
result.append(pred) | |
if score: | |
correct_ratio = 100 * sum(score) / len(score) | |
if args.debug: print(subject_name, correct_ratio) | |
else: | |
correct_ratio = 0 | |
if save_result_dir: | |
test_df['model_output'] = result | |
for i, choice in enumerate(choices): | |
test_df[f'prob_{choice}'] = (all_probs[f'prob_{choice}']) | |
if score: | |
test_df["correctness"] = score | |
os.makedirs(save_result_dir, exist_ok=True) | |
test_df.to_csv(os.path.join( | |
save_result_dir, f'{subject_name}_result.csv'), encoding="utf-8", index=False) | |
return correct_ratio | |
def cal_ceval(res): | |
acc_sum_dict = dict() | |
acc_norm_sum_dict = dict() | |
cnt_dict = dict() | |
acc_sum = 0. | |
cnt = 0 | |
hard_cnt = 0 | |
hard_acc_sum = 0. | |
for tt in res.keys(): | |
name = tt.split('-')[-1] | |
acc_sum += float(res[tt]) | |
cnt += 1 | |
class_ = TASK_NAME_MAPPING[name][2] | |
if class_ not in acc_sum_dict: | |
acc_sum_dict[class_] = 0. | |
acc_norm_sum_dict[class_] = 0. | |
cnt_dict[class_] = 0. | |
if name in hard_list: | |
hard_cnt += 1 | |
hard_acc_sum += float(res[tt]) | |
acc_sum_dict[class_] += float(res[tt]) | |
cnt_dict[class_] += 1 | |
print('\n\n\n') | |
for k in ['STEM', 'Social Science', 'Humanities', 'Other']: | |
if k in cnt_dict: | |
print('%s acc: %.2f ' % ( | |
k, acc_sum_dict[k] / cnt_dict[k])) | |
if hard_cnt > 0: | |
print('Hard acc:%.2f ' % (hard_acc_sum / hard_cnt)) | |
print('AVERAGE acc:%.2f ' % (acc_sum / cnt)) | |
TASK_NAME_MAPPING = { | |
"computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"], | |
"operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"], | |
"computer_architecture": ["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"], | |
"college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"], | |
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"], | |
"college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"], | |
"advanced_mathematics": ["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"], | |
"probability_and_statistics": ["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"], | |
"discrete_mathematics": ["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"], | |
"electrical_engineer": ["Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08", "STEM"], | |
"metrology_engineer": ["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"], | |
"high_school_mathematics": ["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"], | |
"high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"], | |
"high_school_chemistry": ["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"], | |
"high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"], | |
"middle_school_mathematics": ["Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"], | |
"middle_school_biology": ["Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"], | |
"middle_school_physics": ["Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"], | |
"middle_school_chemistry": ["Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"], | |
"veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"], | |
"college_economics": ["College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"], | |
"business_administration": ["Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"], | |
"marxism": ["Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406", "Social Science"], | |
"mao_zedong_thought": ["Mao Zedong Thought", "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba", "Social Science"], | |
"education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"], | |
"teacher_qualification": ["Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"], | |
"high_school_politics": ["High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"], | |
"high_school_geography": ["High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"], | |
"middle_school_politics": ["Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"], | |
"middle_school_geography": ["Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"], | |
"modern_chinese_history": ["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"], | |
"ideological_and_moral_cultivation": ["Ideological and Moral Cultivation", "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840", "Humanities"], | |
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"], | |
"law": ["Law", "\u6cd5\u5b66", "Humanities"], | |
"chinese_language_and_literature": ["Chinese Language and Literature", "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"], | |
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"], | |
"professional_tour_guide": ["Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"], | |
"legal_professional": ["Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c", "Humanities"], | |
"high_school_chinese": ["High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"], | |
"high_school_history": ["High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"], | |
"middle_school_history": ["Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"], | |
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"], | |
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"], | |
"plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"], | |
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"], | |
"clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"], | |
"urban_and_rural_planner": ["Urban and Rural Planner", "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"], | |
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"], | |
"fire_engineer": ["Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"], | |
"environmental_impact_assessment_engineer": ["Environmental Impact Assessment Engineer", "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"], | |
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"], | |
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"] | |
} | |
hard_list = ['advanced_mathematics', 'discrete_mathematics', 'probability_and_statistics', 'college_physics', 'college_chemistry', 'high_school_mathematics', 'high_school_physics', 'high_school_chemistry'] | |
choices = ["A", "B", "C", "D"] | |
def main(args): | |
model, tokenizer = load_models_tokenizer(args) | |
dev_result = {} | |
for subject_name in tqdm(TASK_NAME_MAPPING.keys()): | |
val_file_path = os.path.join(args.eval_data_path, 'val', f'{subject_name}_val.csv') | |
dev_file_path = os.path.join(args.eval_data_path, 'dev', f'{subject_name}_dev.csv') | |
# test_file_path = os.path.join(args.eval_data_path, 'test', f'{subject_name}_test.csv') | |
val_df = pd.read_csv(val_file_path) | |
dev_df = pd.read_csv(dev_file_path) | |
# test_df = pd.read_csv(test_file_path) | |
score = eval_subject(model, tokenizer, subject_name, val_df, dev_df=dev_df, k=5, few_shot=True, | |
save_result_dir=f"outs/ceval_eval_result") | |
dev_result[subject_name] = score | |
cal_ceval(dev_result) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Test HF checkpoint.') | |
parser.add_argument('-c', '--checkpoint-path', type=str, help='Checkpoint path', default="Qwen/Qwen-7B") | |
parser.add_argument('-s', '--seed', type=int, default=1234, help='Random seed') | |
"""Provide extra arguments required for tasks.""" | |
group = parser.add_argument_group(title='Evaluation options') | |
group.add_argument('-d', '--eval_data_path', type=str, required=True, | |
help='Path to eval data') | |
group.add_argument("--max-seq-len", type=int, default=2048, | |
help='Size of the output generated text.') | |
group.add_argument("--debug", action='store_true', default=False, | |
help='Print infos.') | |
args = parser.parse_args() | |
set_seed(args.seed) | |
main(args) |