Qwen-7B-main / examples /react_demo.py
znskiss's picture
Upload folder using huggingface_hub
ade0520
raw
history blame
12.4 kB
#
# 相关材料:
# ReAct Prompting 原理简要介绍,不包含代码实现:
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_prompt.md
# 基于 model.chat 接口(对话模式)的 ReAct Prompting 实现(含接入 LangChain 的工具实现):
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb
# 基于 model.generate 接口(续写模式)的 ReAct Prompting 实现,比 chat 模式的实现更复杂些:
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py(本文件)
#
import json
import os
import json5
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
for _ in range(10): # 网络不稳定,多试几次
try:
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True
).eval()
model.generation_config = generation_config
model.generation_config.do_sample = False
break
except Exception:
pass
# 将一个插件的关键信息拼接成一段文本的模版。
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}"""
# ReAct prompting 的 instruction 模版,将包含插件的详细信息。
PROMPT_REACT = """Answer the following questions as best you can. You have access to the following tools:
{tools_text}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tools_name_text}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin!
Question: {query}"""
#
# 本示例代码的入口函数。
#
# 输入:
# prompt: 用户的最新一个问题。
# history: 用户与模型的对话历史,是一个 list,
# list 中的每个元素为 {"user": "用户输入", "bot": "模型输出"} 的一轮对话。
# 最新的一轮对话放 list 末尾。不包含最新一个问题。
# list_of_plugin_info: 候选插件列表,是一个 list,list 中的每个元素为一个插件的关键信息。
# 比如 list_of_plugin_info = [plugin_info_0, plugin_info_1, plugin_info_2],
# 其中 plugin_info_0, plugin_info_1, plugin_info_2 这几个样例见本文档前文。
#
# 输出:
# 模型对用户最新一个问题的回答。
#
def llm_with_plugin(prompt: str, history, list_of_plugin_info=()):
chat_history = [(x['user'], x['bot']) for x in history] + [(prompt, '')]
# 需要让模型进行续写的初始文本
planning_prompt = build_input_text(chat_history, list_of_plugin_info)
text = ''
while True:
output = text_completion(planning_prompt + text, stop_words=['Observation:', 'Observation:\n'])
action, action_input, output = parse_latest_plugin_call(output)
if action: # 需要调用插件
# action、action_input 分别为需要调用的插件代号、输入参数
# observation是插件返回的结果,为字符串
observation = call_plugin(action, action_input)
output += f'\nObservation: {observation}\nThought:'
text += output
else: # 生成结束,并且不再需要调用插件
text += output
break
new_history = []
new_history.extend(history)
new_history.append({'user': prompt, 'bot': text})
return text, new_history
# 将对话历史、插件信息聚合成一段初始文本
def build_input_text(chat_history, list_of_plugin_info) -> str:
# 候选插件的详细信息
tools_text = []
for plugin_info in list_of_plugin_info:
tool = TOOL_DESC.format(
name_for_model=plugin_info["name_for_model"],
name_for_human=plugin_info["name_for_human"],
description_for_model=plugin_info["description_for_model"],
parameters=json.dumps(plugin_info["parameters"], ensure_ascii=False),
)
if plugin_info.get('args_format', 'json') == 'json':
tool += " Format the arguments as a JSON object."
elif plugin_info['args_format'] == 'code':
tool += ' Enclose the code within triple backticks (`) at the beginning and end of the code.'
else:
raise NotImplementedError
tools_text.append(tool)
tools_text = '\n\n'.join(tools_text)
# 候选插件的代号
tools_name_text = ', '.join([plugin_info["name_for_model"] for plugin_info in list_of_plugin_info])
im_start = '<|im_start|>'
im_end = '<|im_end|>'
prompt = f'{im_start}system\nYou are a helpful assistant.{im_end}'
for i, (query, response) in enumerate(chat_history):
if list_of_plugin_info: # 如果有候选插件
# 倒数第一轮或倒数第二轮对话填入详细的插件信息,但具体什么位置填可以自行判断
if (len(chat_history) == 1) or (i == len(chat_history) - 2):
query = PROMPT_REACT.format(
tools_text=tools_text,
tools_name_text=tools_name_text,
query=query,
)
query = query.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。
response = response.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。
# 使用续写模式(text completion)时,需要用如下格式区分用户和AI:
prompt += f"\n{im_start}user\n{query}{im_end}"
prompt += f"\n{im_start}assistant\n{response}{im_end}"
assert prompt.endswith(f"\n{im_start}assistant\n{im_end}")
prompt = prompt[: -len(f'{im_end}')]
return prompt
def text_completion(input_text: str, stop_words) -> str: # 作为一个文本续写模型来使用
im_end = '<|im_end|>'
if im_end not in stop_words:
stop_words = stop_words + [im_end]
stop_words_ids = [tokenizer.encode(w) for w in stop_words]
# TODO: 增加流式输出的样例实现
input_ids = torch.tensor([tokenizer.encode(input_text)]).to(model.device)
output = model.generate(input_ids, stop_words_ids=stop_words_ids)
output = output.tolist()[0]
output = tokenizer.decode(output, errors="ignore")
assert output.startswith(input_text)
output = output[len(input_text) :].replace('<|endoftext|>', '').replace(im_end, '')
for stop_str in stop_words:
idx = output.find(stop_str)
if idx != -1:
output = output[: idx + len(stop_str)]
return output # 续写 input_text 的结果,不包含 input_text 的内容
def parse_latest_plugin_call(text):
plugin_name, plugin_args = '', ''
i = text.rfind('\nAction:')
j = text.rfind('\nAction Input:')
k = text.rfind('\nObservation:')
if 0 <= i < j: # If the text has `Action` and `Action input`,
if k < j: # but does not contain `Observation`,
# then it is likely that `Observation` is ommited by the LLM,
# because the output text may have discarded the stop word.
text = text.rstrip() + '\nObservation:' # Add it back.
k = text.rfind('\nObservation:')
plugin_name = text[i + len('\nAction:') : j].strip()
plugin_args = text[j + len('\nAction Input:') : k].strip()
text = text[:k]
return plugin_name, plugin_args, text
#
# 输入:
# plugin_name: 需要调用的插件代号,对应 name_for_model。
# plugin_args:插件的输入参数,是一个 dict,dict 的 key、value 分别为参数名、参数值。
# 输出:
# 插件的返回结果,需要是字符串。
# 即使原本是 JSON 输出,也请 json.dumps(..., ensure_ascii=False) 成字符串。
#
def call_plugin(plugin_name: str, plugin_args: str) -> str:
#
# 请开发者自行完善这部分内容。这里的参考实现仅是 demo 用途,非生产用途。
#
if plugin_name == 'google_search':
# 使用 SerpAPI 需要在这里填入您的 SERPAPI_API_KEY!
os.environ["SERPAPI_API_KEY"] = os.getenv("SERPAPI_API_KEY", default='')
from langchain import SerpAPIWrapper
return SerpAPIWrapper().run(json5.loads(plugin_args)['search_query'])
elif plugin_name == 'image_gen':
import urllib.parse
prompt = json5.loads(plugin_args)["prompt"]
prompt = urllib.parse.quote(prompt)
return json.dumps({'image_url': f'https://image.pollinations.ai/prompt/{prompt}'}, ensure_ascii=False)
else:
raise NotImplementedError
def test():
tools = [
{
'name_for_human': '谷歌搜索',
'name_for_model': 'google_search',
'description_for_model': '谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
'parameters': [
{
'name': 'search_query',
'description': '搜索关键词或短语',
'required': True,
'schema': {'type': 'string'},
}
],
},
{
'name_for_human': '文生图',
'name_for_model': 'image_gen',
'description_for_model': '文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
'parameters': [
{
'name': 'prompt',
'description': '英文关键词,描述了希望图像具有什么内容',
'required': True,
'schema': {'type': 'string'},
}
],
},
]
history = []
for query in ['你好', '谁是周杰伦', '他老婆是谁', '给我画个可爱的小猫吧,最好是黑猫']:
print(f"User's Query:\n{query}\n")
response, history = llm_with_plugin(prompt=query, history=history, list_of_plugin_info=tools)
print(f"Qwen's Response:\n{response}\n")
if __name__ == "__main__":
test()
"""如果执行成功,在终端下应当能看到如下输出:
User's Query:
你好
Qwen's Response:
Thought: 提供的工具对回答该问题帮助较小,我将不使用工具直接作答。
Final Answer: 你好!很高兴见到你。有什么我可以帮忙的吗?
User's Query:
谁是周杰伦
Qwen's Response:
Thought: 我应该使用Google搜索查找相关信息。
Action: google_search
Action Input: {"search_query": "周杰伦"}
Observation: Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman.
Thought: I now know the final answer.
Final Answer: 周杰伦(Jay Chou)是一位来自台湾的歌手、词曲创作人、音乐制作人、说唱歌手、演员、电视节目主持人和企业家。他以其独特的音乐风格和才华在华语乐坛享有很高的声誉。
User's Query:
他老婆是谁
Qwen's Response:
Thought: 我应该使用Google搜索查找相关信息。
Action: google_search
Action Input: {"search_query": "周杰伦 老婆"}
Observation: Hannah Quinlivan
Thought: I now know the final answer.
Final Answer: 周杰伦的老婆是Hannah Quinlivan,她是一位澳大利亚籍的模特和演员。两人于2015年结婚,并育有一子。
User's Query:
给我画个可爱的小猫吧,最好是黑猫
Qwen's Response:
Thought: 我应该使用文生图API来生成一张可爱的小猫图片。
Action: image_gen
Action Input: {"prompt": "cute black cat"}
Observation: {"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"}
Thought: I now know the final answer.
Final Answer: 生成的可爱小猫图片的URL为https://image.pollinations.ai/prompt/cute%20black%20cat。你可以点击这个链接查看图片。
"""