Spaces:
Runtime error
Runtime error
# | |
# 相关材料: | |
# ReAct Prompting 原理简要介绍,不包含代码实现: | |
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_prompt.md | |
# 基于 model.chat 接口(对话模式)的 ReAct Prompting 实现(含接入 LangChain 的工具实现): | |
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb | |
# 基于 model.generate 接口(续写模式)的 ReAct Prompting 实现,比 chat 模式的实现更复杂些: | |
# https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py(本文件) | |
# | |
import json | |
import os | |
import json5 | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
for _ in range(10): # 网络不稳定,多试几次 | |
try: | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) | |
generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen-7B-Chat", device_map="auto", trust_remote_code=True | |
).eval() | |
model.generation_config = generation_config | |
model.generation_config.do_sample = False | |
break | |
except Exception: | |
pass | |
# 将一个插件的关键信息拼接成一段文本的模版。 | |
TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters}""" | |
# ReAct prompting 的 instruction 模版,将包含插件的详细信息。 | |
PROMPT_REACT = """Answer the following questions as best you can. You have access to the following tools: | |
{tools_text} | |
Use the following format: | |
Question: the input question you must answer | |
Thought: you should always think about what to do | |
Action: the action to take, should be one of [{tools_name_text}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
(this Thought/Action/Action Input/Observation can be repeated zero or more times) | |
Thought: I now know the final answer | |
Final Answer: the final answer to the original input question | |
Begin! | |
Question: {query}""" | |
# | |
# 本示例代码的入口函数。 | |
# | |
# 输入: | |
# prompt: 用户的最新一个问题。 | |
# history: 用户与模型的对话历史,是一个 list, | |
# list 中的每个元素为 {"user": "用户输入", "bot": "模型输出"} 的一轮对话。 | |
# 最新的一轮对话放 list 末尾。不包含最新一个问题。 | |
# list_of_plugin_info: 候选插件列表,是一个 list,list 中的每个元素为一个插件的关键信息。 | |
# 比如 list_of_plugin_info = [plugin_info_0, plugin_info_1, plugin_info_2], | |
# 其中 plugin_info_0, plugin_info_1, plugin_info_2 这几个样例见本文档前文。 | |
# | |
# 输出: | |
# 模型对用户最新一个问题的回答。 | |
# | |
def llm_with_plugin(prompt: str, history, list_of_plugin_info=()): | |
chat_history = [(x['user'], x['bot']) for x in history] + [(prompt, '')] | |
# 需要让模型进行续写的初始文本 | |
planning_prompt = build_input_text(chat_history, list_of_plugin_info) | |
text = '' | |
while True: | |
output = text_completion(planning_prompt + text, stop_words=['Observation:', 'Observation:\n']) | |
action, action_input, output = parse_latest_plugin_call(output) | |
if action: # 需要调用插件 | |
# action、action_input 分别为需要调用的插件代号、输入参数 | |
# observation是插件返回的结果,为字符串 | |
observation = call_plugin(action, action_input) | |
output += f'\nObservation: {observation}\nThought:' | |
text += output | |
else: # 生成结束,并且不再需要调用插件 | |
text += output | |
break | |
new_history = [] | |
new_history.extend(history) | |
new_history.append({'user': prompt, 'bot': text}) | |
return text, new_history | |
# 将对话历史、插件信息聚合成一段初始文本 | |
def build_input_text(chat_history, list_of_plugin_info) -> str: | |
# 候选插件的详细信息 | |
tools_text = [] | |
for plugin_info in list_of_plugin_info: | |
tool = TOOL_DESC.format( | |
name_for_model=plugin_info["name_for_model"], | |
name_for_human=plugin_info["name_for_human"], | |
description_for_model=plugin_info["description_for_model"], | |
parameters=json.dumps(plugin_info["parameters"], ensure_ascii=False), | |
) | |
if plugin_info.get('args_format', 'json') == 'json': | |
tool += " Format the arguments as a JSON object." | |
elif plugin_info['args_format'] == 'code': | |
tool += ' Enclose the code within triple backticks (`) at the beginning and end of the code.' | |
else: | |
raise NotImplementedError | |
tools_text.append(tool) | |
tools_text = '\n\n'.join(tools_text) | |
# 候选插件的代号 | |
tools_name_text = ', '.join([plugin_info["name_for_model"] for plugin_info in list_of_plugin_info]) | |
im_start = '<|im_start|>' | |
im_end = '<|im_end|>' | |
prompt = f'{im_start}system\nYou are a helpful assistant.{im_end}' | |
for i, (query, response) in enumerate(chat_history): | |
if list_of_plugin_info: # 如果有候选插件 | |
# 倒数第一轮或倒数第二轮对话填入详细的插件信息,但具体什么位置填可以自行判断 | |
if (len(chat_history) == 1) or (i == len(chat_history) - 2): | |
query = PROMPT_REACT.format( | |
tools_text=tools_text, | |
tools_name_text=tools_name_text, | |
query=query, | |
) | |
query = query.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。 | |
response = response.lstrip('\n').rstrip() # 重要!若不 strip 会与训练时数据的构造方式产生差异。 | |
# 使用续写模式(text completion)时,需要用如下格式区分用户和AI: | |
prompt += f"\n{im_start}user\n{query}{im_end}" | |
prompt += f"\n{im_start}assistant\n{response}{im_end}" | |
assert prompt.endswith(f"\n{im_start}assistant\n{im_end}") | |
prompt = prompt[: -len(f'{im_end}')] | |
return prompt | |
def text_completion(input_text: str, stop_words) -> str: # 作为一个文本续写模型来使用 | |
im_end = '<|im_end|>' | |
if im_end not in stop_words: | |
stop_words = stop_words + [im_end] | |
stop_words_ids = [tokenizer.encode(w) for w in stop_words] | |
# TODO: 增加流式输出的样例实现 | |
input_ids = torch.tensor([tokenizer.encode(input_text)]).to(model.device) | |
output = model.generate(input_ids, stop_words_ids=stop_words_ids) | |
output = output.tolist()[0] | |
output = tokenizer.decode(output, errors="ignore") | |
assert output.startswith(input_text) | |
output = output[len(input_text) :].replace('<|endoftext|>', '').replace(im_end, '') | |
for stop_str in stop_words: | |
idx = output.find(stop_str) | |
if idx != -1: | |
output = output[: idx + len(stop_str)] | |
return output # 续写 input_text 的结果,不包含 input_text 的内容 | |
def parse_latest_plugin_call(text): | |
plugin_name, plugin_args = '', '' | |
i = text.rfind('\nAction:') | |
j = text.rfind('\nAction Input:') | |
k = text.rfind('\nObservation:') | |
if 0 <= i < j: # If the text has `Action` and `Action input`, | |
if k < j: # but does not contain `Observation`, | |
# then it is likely that `Observation` is ommited by the LLM, | |
# because the output text may have discarded the stop word. | |
text = text.rstrip() + '\nObservation:' # Add it back. | |
k = text.rfind('\nObservation:') | |
plugin_name = text[i + len('\nAction:') : j].strip() | |
plugin_args = text[j + len('\nAction Input:') : k].strip() | |
text = text[:k] | |
return plugin_name, plugin_args, text | |
# | |
# 输入: | |
# plugin_name: 需要调用的插件代号,对应 name_for_model。 | |
# plugin_args:插件的输入参数,是一个 dict,dict 的 key、value 分别为参数名、参数值。 | |
# 输出: | |
# 插件的返回结果,需要是字符串。 | |
# 即使原本是 JSON 输出,也请 json.dumps(..., ensure_ascii=False) 成字符串。 | |
# | |
def call_plugin(plugin_name: str, plugin_args: str) -> str: | |
# | |
# 请开发者自行完善这部分内容。这里的参考实现仅是 demo 用途,非生产用途。 | |
# | |
if plugin_name == 'google_search': | |
# 使用 SerpAPI 需要在这里填入您的 SERPAPI_API_KEY! | |
os.environ["SERPAPI_API_KEY"] = os.getenv("SERPAPI_API_KEY", default='') | |
from langchain import SerpAPIWrapper | |
return SerpAPIWrapper().run(json5.loads(plugin_args)['search_query']) | |
elif plugin_name == 'image_gen': | |
import urllib.parse | |
prompt = json5.loads(plugin_args)["prompt"] | |
prompt = urllib.parse.quote(prompt) | |
return json.dumps({'image_url': f'https://image.pollinations.ai/prompt/{prompt}'}, ensure_ascii=False) | |
else: | |
raise NotImplementedError | |
def test(): | |
tools = [ | |
{ | |
'name_for_human': '谷歌搜索', | |
'name_for_model': 'google_search', | |
'description_for_model': '谷歌搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。', | |
'parameters': [ | |
{ | |
'name': 'search_query', | |
'description': '搜索关键词或短语', | |
'required': True, | |
'schema': {'type': 'string'}, | |
} | |
], | |
}, | |
{ | |
'name_for_human': '文生图', | |
'name_for_model': 'image_gen', | |
'description_for_model': '文生图是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL', | |
'parameters': [ | |
{ | |
'name': 'prompt', | |
'description': '英文关键词,描述了希望图像具有什么内容', | |
'required': True, | |
'schema': {'type': 'string'}, | |
} | |
], | |
}, | |
] | |
history = [] | |
for query in ['你好', '谁是周杰伦', '他老婆是谁', '给我画个可爱的小猫吧,最好是黑猫']: | |
print(f"User's Query:\n{query}\n") | |
response, history = llm_with_plugin(prompt=query, history=history, list_of_plugin_info=tools) | |
print(f"Qwen's Response:\n{response}\n") | |
if __name__ == "__main__": | |
test() | |
"""如果执行成功,在终端下应当能看到如下输出: | |
User's Query: | |
你好 | |
Qwen's Response: | |
Thought: 提供的工具对回答该问题帮助较小,我将不使用工具直接作答。 | |
Final Answer: 你好!很高兴见到你。有什么我可以帮忙的吗? | |
User's Query: | |
谁是周杰伦 | |
Qwen's Response: | |
Thought: 我应该使用Google搜索查找相关信息。 | |
Action: google_search | |
Action Input: {"search_query": "周杰伦"} | |
Observation: Jay Chou is a Taiwanese singer, songwriter, record producer, rapper, actor, television personality, and businessman. | |
Thought: I now know the final answer. | |
Final Answer: 周杰伦(Jay Chou)是一位来自台湾的歌手、词曲创作人、音乐制作人、说唱歌手、演员、电视节目主持人和企业家。他以其独特的音乐风格和才华在华语乐坛享有很高的声誉。 | |
User's Query: | |
他老婆是谁 | |
Qwen's Response: | |
Thought: 我应该使用Google搜索查找相关信息。 | |
Action: google_search | |
Action Input: {"search_query": "周杰伦 老婆"} | |
Observation: Hannah Quinlivan | |
Thought: I now know the final answer. | |
Final Answer: 周杰伦的老婆是Hannah Quinlivan,她是一位澳大利亚籍的模特和演员。两人于2015年结婚,并育有一子。 | |
User's Query: | |
给我画个可爱的小猫吧,最好是黑猫 | |
Qwen's Response: | |
Thought: 我应该使用文生图API来生成一张可爱的小猫图片。 | |
Action: image_gen | |
Action Input: {"prompt": "cute black cat"} | |
Observation: {"image_url": "https://image.pollinations.ai/prompt/cute%20black%20cat"} | |
Thought: I now know the final answer. | |
Final Answer: 生成的可爱小猫图片的URL为https://image.pollinations.ai/prompt/cute%20black%20cat。你可以点击这个链接查看图片。 | |
""" | |