Spaces:
Running
Running
# 4/28/2024 | |
# Not working on huggingface :( | |
# This version added saving chat history to a log file | |
# Updated the GPT model to gpt-4 | |
# Add timestamp and ip address | |
# 2/23/2024 | |
# This version uses different method in llama index to define llm model | |
# Removed deprecated classes and replaced with newest dependencies | |
import openai | |
import json | |
import gradio as gr | |
import os | |
from openai import OpenAI | |
#from langchain_community.chat_models import ChatOpenAI | |
#from langchain_community.chat_models.openai import ChatOpenAI | |
# rebuild storage context and load knowledge index | |
# from llama_index import StorageContext, load_index_from_storage, LLMPredictor, ServiceContext | |
from llama_index.core import StorageContext | |
from llama_index.core import load_index_from_storage | |
from llama_index.llms.openai import OpenAI | |
#from llama_index.core import Settings | |
from datetime import datetime; | |
import socket; | |
# deprecated | |
storage_context = StorageContext.from_defaults(persist_dir='./') | |
# gpt-3.5_turbo is the current default model | |
#llm_predictor = OpenAI(temperature=0.5, model_name="gpt-4") | |
#service_context = ServiceContext.from_defaults(llm=llm_predictor) | |
#index = load_index_from_storage(storage_context, service_context=service_context) | |
index = load_index_from_storage(storage_context) | |
class Chatbot: | |
def __init__(self, api_key, index): | |
self.index = index | |
openai.api_key = api_key | |
self.chat_history = [] | |
#self.history_file = f"./chat_log.json" | |
def generate_response(self, user_input): | |
query_engine = index.as_query_engine() | |
response = query_engine.query(user_input) | |
# generate response | |
message = {"role": "assistant", "content": response.response} | |
return message | |
def load_chat_history(self): | |
try: | |
with open(self.history_file, 'r') as f: | |
self.chat_history = json.load(f) | |
except FileNotFoundError: | |
pass | |
def append_chat_history(self, user_input, output): | |
# append chat history | |
dt = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
print(dt) | |
hostname = socket.gethostname() | |
ip = socket.gethostbyname(hostname) | |
print(ip) | |
#self.chat_history.append({"role": "datetime", "content": dt}) | |
#self.chat_history.append({"role": "IP", "content": ip}) | |
#self.chat_history.append({"role": "user", "content": user_input}) | |
#self.chat_history.append({"role": "assistant", "content": output}) | |
# save the data in dictionary format | |
dictionary = { | |
"datetime": dt, | |
"ip": ip, | |
"user": user_input, | |
"assistant": output | |
} | |
self.chat_history.append(dictionary) | |
def save_chat_history(self): | |
with open(self.history_file, 'w') as f: | |
json.dump(self.chat_history, f) | |
def create_bot(user_input): | |
bot = Chatbot(os.getenv("OPENAI_API_KEY"), index=index) | |
#bot.load_chat_history(); | |
if user_input: | |
# use moderations endpoint to check input | |
client = openai.OpenAI() | |
response_mod = client.moderations.create(input=user_input) | |
response_dict = response_mod.model_dump() | |
flagged = response_dict['results'][0]['flagged'] | |
#print("Flagged:", flagged) | |
if not flagged: | |
response_bot = bot.generate_response(user_input) | |
output = response_bot['content'] | |
else: | |
output = "Invalid request." | |
#bot.append_chat_history(user_input, output) | |
#bot.save_chat_history() | |
return output | |
inputs = gr.components.Textbox(lines=7, label="Ask questions related to the course. For example, when is the due date for Excel Module 9, what is the assignment late policy, how to use NPV function in Excel, etc.") | |
outputs = gr.components.Textbox(label="Response") | |
gr.Interface(fn=create_bot, inputs=inputs, outputs=outputs, title="Virtual TA", | |
description="This is a prototype of learning assistant designed for MIS 320 online section (Version 2.0). Powered by ChatGPT.\nNote: ChatGPT can make mistakes. Consider checking important information.", | |
theme="compact").launch(share=True) | |