Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,43 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from ultralytics import YOLO
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Load the trained model
|
7 |
-
model_path = '
|
8 |
-
model = YOLO(model_path)
|
9 |
-
|
10 |
-
# Function to perform inference on an image
|
11 |
-
def infer_image(image):
|
12 |
-
# Convert the image from BGR to RGB
|
13 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
14 |
-
|
15 |
-
# Perform inference
|
16 |
-
results = model(image_rgb)
|
17 |
-
|
18 |
-
# Extract results and annotate image
|
19 |
-
for result in results:
|
20 |
-
for box in result.boxes:
|
21 |
-
x1, y1, x2, y2 = box.xyxy[0]
|
22 |
-
cls = int(box.cls[0])
|
23 |
-
conf = float(box.conf[0])
|
24 |
-
|
25 |
-
# Draw bounding box
|
26 |
-
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
27 |
-
# Draw label
|
28 |
-
label = f'{model.names[cls]} {conf:.2f}'
|
29 |
-
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
30 |
-
|
31 |
-
return image
|
32 |
-
|
33 |
-
# Create Gradio interface
|
34 |
-
iface = gr.Interface(
|
35 |
-
fn=infer_image,
|
36 |
-
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
37 |
-
outputs=gr.Image(type="numpy", label="Annotated Image"),
|
38 |
-
title="YOLOv8 Inference",
|
39 |
-
description="Upload an image to get object detection results using YOLOv8."
|
40 |
-
)
|
41 |
-
|
42 |
-
# Launch the app
|
43 |
-
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLO
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
model_path = 'best.pt' # Replace with the path to your trained .pt file
|
8 |
+
model = YOLO(model_path)
|
9 |
+
|
10 |
+
# Function to perform inference on an image
|
11 |
+
def infer_image(image):
|
12 |
+
# Convert the image from BGR to RGB
|
13 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
14 |
+
|
15 |
+
# Perform inference
|
16 |
+
results = model(image_rgb)
|
17 |
+
|
18 |
+
# Extract results and annotate image
|
19 |
+
for result in results:
|
20 |
+
for box in result.boxes:
|
21 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
22 |
+
cls = int(box.cls[0])
|
23 |
+
conf = float(box.conf[0])
|
24 |
+
|
25 |
+
# Draw bounding box
|
26 |
+
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
27 |
+
# Draw label
|
28 |
+
label = f'{model.names[cls]} {conf:.2f}'
|
29 |
+
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
30 |
+
|
31 |
+
return image
|
32 |
+
|
33 |
+
# Create Gradio interface
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=infer_image,
|
36 |
+
inputs=gr.Image(type="numpy", label="Upload an Image"),
|
37 |
+
outputs=gr.Image(type="numpy", label="Annotated Image"),
|
38 |
+
title="YOLOv8 Inference",
|
39 |
+
description="Upload an image to get object detection results using YOLOv8."
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the app
|
43 |
+
iface.launch()
|