Spaces:
Sleeping
Sleeping
import os | |
os.system("python -m spacy download en_core_web_sm") | |
import io | |
import base64 | |
import streamlit as st | |
import numpy as np | |
import fitz # PyMuPDF | |
import tempfile | |
from ultralytics import YOLO | |
from sklearn.cluster import KMeans | |
from sklearn.metrics.pairwise import cosine_similarity | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_text_splitters import SpacyTextSplitter | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI | |
import re | |
from PIL import Image | |
from streamlit_chat import message | |
# Load the trained model | |
model = YOLO("best.pt") | |
openai_api_key = os.environ.get("openai_api_key") | |
# Define the class indices for figures, tables, and text | |
figure_class_index = 4 | |
table_class_index = 3 | |
# Utility functions | |
def clean_text(text): | |
return re.sub(r'\s+', ' ', text).strip() | |
def remove_references(text): | |
reference_patterns = [ | |
r'\bReferences\b', r'\breferences\b', r'\bBibliography\b', r'\bCitations\b', | |
r'\bWorks Cited\b', r'\bReference\b', r'\breference\b' | |
] | |
lines = text.split('\n') | |
for i, line in enumerate(lines): | |
if any(re.search(pattern, line, re.IGNORECASE) for pattern in reference_patterns): | |
return '\n'.join(lines[:i]) | |
return text | |
def save_uploaded_file(uploaded_file): | |
temp_file = tempfile.NamedTemporaryFile(delete=False) | |
temp_file.write(uploaded_file.getbuffer()) | |
temp_file.close() | |
return temp_file.name | |
def summarize_pdf(pdf_file_path, num_clusters=10): | |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key) | |
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3) | |
prompt = ChatPromptTemplate.from_template( | |
"""Could you please provide a concise and comprehensive summary of the given Contexts? | |
The summary should capture the main points and key details of the text while conveying the author's intended meaning accurately. | |
Please ensure that the summary is well-organized and easy to read, with clear headings and subheadings to guide the reader through each section. | |
The length of the summary should be appropriate to capture the main points and key details of the text, without including unnecessary information or becoming overly long. | |
example of summary: | |
## Summary: | |
## Key points: | |
Contexts: {topic}""" | |
) | |
output_parser = StrOutputParser() | |
chain = prompt | llm | output_parser | |
loader = PyMuPDFLoader(pdf_file_path) | |
docs = loader.load() | |
full_text = "\n".join(doc.page_content for doc in docs) | |
cleaned_full_text = clean_text(remove_references(full_text)) | |
text_splitter = SpacyTextSplitter(chunk_size=500) | |
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0, separators=["\n\n", "\n", ".", " "]) | |
split_contents = text_splitter.split_text(cleaned_full_text) | |
embeddings = embeddings_model.embed_documents(split_contents) | |
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0).fit(embeddings) | |
closest_point_indices = [np.argmin(np.linalg.norm(embeddings - center, axis=1)) for center in kmeans.cluster_centers_] | |
extracted_contents = [split_contents[idx] for idx in closest_point_indices] | |
results = chain.invoke({"topic": ' '.join(extracted_contents)}) | |
return generate_citations(results, extracted_contents) | |
def qa_pdf(pdf_file_path, query, num_clusters=5, similarity_threshold=0.6): | |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key) | |
llm = ChatOpenAI(model="gpt-4o-mini", api_key=openai_api_key, temperature=0.3) | |
prompt = ChatPromptTemplate.from_template( | |
"""Please provide a detailed and accurate answer to the given question based on the provided contexts. | |
Ensure that the answer is comprehensive and directly addresses the query. | |
If necessary, include relevant examples or details from the text. | |
Question: {question} | |
Contexts: {contexts}""" | |
) | |
output_parser = StrOutputParser() | |
chain = prompt | llm | output_parser | |
loader = PyMuPDFLoader(pdf_file_path) | |
docs = loader.load() | |
full_text = "\n".join(doc.page_content for doc in docs) | |
cleaned_full_text = clean_text(remove_references(full_text)) | |
text_splitter = SpacyTextSplitter(chunk_size=500) | |
#text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=0, separators=["\n\n", "\n", ".", " "]) | |
split_contents = text_splitter.split_text(cleaned_full_text) | |
embeddings = embeddings_model.embed_documents(split_contents) | |
query_embedding = embeddings_model.embed_query(query) | |
similarity_scores = cosine_similarity([query_embedding], embeddings)[0] | |
top_indices = np.argsort(similarity_scores)[-num_clusters:] | |
relevant_contents = [split_contents[i] for i in top_indices] | |
results = chain.invoke({"question": query, "contexts": ' '.join(relevant_contents)}) | |
return generate_citations(results, relevant_contents, similarity_threshold) | |
def generate_citations(text, contents, similarity_threshold=0.6): | |
embeddings_model = OpenAIEmbeddings(model="text-embedding-3-small", api_key=openai_api_key) | |
text_sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text) | |
text_embeddings = embeddings_model.embed_documents(text_sentences) | |
content_embeddings = embeddings_model.embed_documents(contents) | |
similarity_matrix = cosine_similarity(text_embeddings, content_embeddings) | |
cited_text = text | |
relevant_sources = [] | |
source_mapping = {} | |
sentence_to_source = {} | |
for i, sentence in enumerate(text_sentences): | |
if sentence in sentence_to_source: | |
continue | |
max_similarity = max(similarity_matrix[i]) | |
if max_similarity >= similarity_threshold: | |
most_similar_idx = np.argmax(similarity_matrix[i]) | |
if most_similar_idx not in source_mapping: | |
source_mapping[most_similar_idx] = len(relevant_sources) + 1 | |
relevant_sources.append((most_similar_idx, contents[most_similar_idx])) | |
citation_idx = source_mapping[most_similar_idx] | |
citation = f"([Source {citation_idx}](#source-{citation_idx}))" | |
cited_sentence = re.sub(r'([.!?])$', f" {citation}\\1", sentence) | |
sentence_to_source[sentence] = citation_idx | |
cited_text = cited_text.replace(sentence, cited_sentence) | |
sources_list = "\n\n## Sources:\n" | |
for idx, (original_idx, content) in enumerate(relevant_sources): | |
sources_list += f""" | |
<details style="margin: 1px 0; padding: 5px; border: 1px solid #ccc; border-radius: 8px; background-color: #f9f9f9; transition: all 0.3s ease;"> | |
<summary style="font-weight: bold; cursor: pointer; outline: none; padding: 5px 0; transition: color 0.3s ease;">Source {idx + 1}</summary> | |
<pre style="white-space: pre-wrap; word-wrap: break-word; margin: 1px 0; padding: 10px; background-color: #fff; border-radius: 5px; border: 1px solid #ddd; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);">{content}</pre> | |
</details> | |
""" | |
# Add dummy blanks after the last source | |
dummy_blanks = """ | |
<div style="margin: 20px 0;"></div> | |
<div style="margin: 20px 0;"></div> | |
<div style="margin: 20px 0;"></div> | |
<div style="margin: 20px 0;"></div> | |
<div style="margin: 20px 0;"></div> | |
""" | |
cited_text += sources_list + dummy_blanks | |
return cited_text | |
def infer_image_and_get_boxes(image, confidence_threshold=0.8): | |
results = model.predict(image) | |
return [ | |
(int(box.xyxy[0][0]), int(box.xyxy[0][1]), int(box.xyxy[0][2]), int(box.xyxy[0][3]), int(box.cls[0])) | |
for result in results for box in result.boxes | |
if int(box.cls[0]) in {figure_class_index, table_class_index} and box.conf[0] > confidence_threshold | |
] | |
def crop_images_from_boxes(image, boxes, scale_factor): | |
figures = [] | |
tables = [] | |
for (x1, y1, x2, y2, cls) in boxes: | |
cropped_img = image[int(y1 * scale_factor):int(y2 * scale_factor), int(x1 * scale_factor):int(x2 * scale_factor)] | |
if cls == figure_class_index: | |
figures.append(cropped_img) | |
elif cls == table_class_index: | |
tables.append(cropped_img) | |
return figures, tables | |
def process_pdf(pdf_file_path): | |
doc = fitz.open(pdf_file_path) | |
all_figures = [] | |
all_tables = [] | |
low_dpi = 50 | |
high_dpi = 300 | |
scale_factor = high_dpi / low_dpi | |
low_res_pixmaps = [page.get_pixmap(dpi=low_dpi) for page in doc] | |
for page_num, low_res_pix in enumerate(low_res_pixmaps): | |
low_res_img = np.frombuffer(low_res_pix.samples, dtype=np.uint8).reshape(low_res_pix.height, low_res_pix.width, 3) | |
boxes = infer_image_and_get_boxes(low_res_img) | |
if boxes: | |
high_res_pix = doc[page_num].get_pixmap(dpi=high_dpi) | |
high_res_img = np.frombuffer(high_res_pix.samples, dtype=np.uint8).reshape(high_res_pix.height, high_res_pix.width, 3) | |
figures, tables = crop_images_from_boxes(high_res_img, boxes, scale_factor) | |
all_figures.extend(figures) | |
all_tables.extend(tables) | |
return all_figures, all_tables | |
def image_to_base64(img): | |
buffered = io.BytesIO() | |
img = Image.fromarray(img) | |
img.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def on_btn_click(): | |
del st.session_state.chat_history[:] | |
# Streamlit interface | |
# Custom CSS for the file uploader | |
uploadercss=''' | |
<style> | |
[data-testid='stFileUploader'] { | |
width: max-content; | |
} | |
[data-testid='stFileUploader'] section { | |
padding: 0; | |
float: left; | |
} | |
[data-testid='stFileUploader'] section > input + div { | |
display: none; | |
} | |
[data-testid='stFileUploader'] section + div { | |
float: right; | |
padding-top: 0; | |
} | |
</style> | |
''' | |
st.set_page_config(page_title="PDF Reading Assistant", page_icon="π") | |
# Initialize chat history in session state if not already present | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
st.title("π PDF Reading Assistant") | |
st.markdown("### Extract tables, figures, summaries, and answers from your PDF files easily.") | |
chat_placeholder = st.empty() | |
# File uploader for PDF | |
uploaded_file = st.file_uploader("Upload a PDF", type="pdf") | |
st.markdown(uploadercss, unsafe_allow_html=True) | |
if uploaded_file: | |
file_path = save_uploaded_file(uploaded_file) | |
# Chat container where all messages will be displayed | |
chat_container = st.container() | |
user_input = st.chat_input("Ask a question about the pdf......", key="user_input") | |
with chat_container: | |
# Scrollable chat messages | |
for idx, chat in enumerate(st.session_state.chat_history): | |
if chat.get("user"): | |
message(chat["user"], is_user=True, allow_html=True, key=f"user_{idx}", avatar_style="initials", seed="user") | |
if chat.get("bot"): | |
message(chat["bot"], is_user=False, allow_html=True, key=f"bot_{idx}",seed="bot") | |
# Input area and buttons for user interaction | |
with st.form(key="chat_form", clear_on_submit=True,border=False): | |
col1, col2, col3 = st.columns([1, 1, 1]) | |
with col1: | |
summary_button = st.form_submit_button("Generate Summary") | |
with col2: | |
extract_button = st.form_submit_button("Extract Tables and Figures") | |
with col3: | |
st.form_submit_button("Clear message", on_click=on_btn_click) | |
# Handle responses based on user input and button presses | |
if summary_button: | |
with st.spinner("Generating summary..."): | |
summary = summarize_pdf(file_path) | |
st.session_state.chat_history.append({"user": "Generate Summary", "bot": summary}) | |
st.rerun() | |
if extract_button: | |
with st.spinner("Extracting tables and figures..."): | |
figures, tables = process_pdf(file_path) | |
if figures: | |
st.session_state.chat_history.append({"user": "Figures"}) | |
for idx, figure in enumerate(figures): | |
figure_base64 = image_to_base64(figure) | |
result_html = f'<img src="data:image/png;base64,{figure_base64}" style="width:100%; display:block;" alt="Figure {idx+1}"/>' | |
st.session_state.chat_history.append({"bot": f"Figure {idx+1} {result_html}"}) | |
if tables: | |
st.session_state.chat_history.append({"user": "Tables"}) | |
for idx, table in enumerate(tables): | |
table_base64 = image_to_base64(table) | |
result_html = f'<img src="data:image/png;base64,{table_base64}" style="width:100%; display:block;" alt="Table {idx+1}"/>' | |
st.session_state.chat_history.append({"bot": f"Table {idx+1} {result_html}"}) | |
st.rerun() | |
if user_input: | |
st.session_state.chat_history.append({"user": user_input, "bot": None}) | |
with st.spinner("Processing..."): | |
answer = qa_pdf(file_path, user_input) | |
st.session_state.chat_history[-1]["bot"] = answer | |
st.rerun() | |
# Additional CSS and JavaScript to ensure the chat container is scrollable and scrolls to the bottom | |
st.markdown(""" | |
<style> | |
#chat-container { | |
max-height: 500px; | |
overflow-y: auto; | |
padding: 1rem; | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
background-color: #fefefe; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); | |
transition: background-color 0.3s ease; | |
} | |
#chat-container:hover { | |
background-color: #f9f9f9; | |
} | |
.stChatMessage { | |
padding: 0.75rem; | |
margin: 0.75rem 0; | |
border-radius: 8px; | |
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); | |
transition: background-color 0.3s ease; | |
} | |
.stChatMessage--user { | |
background-color: #E3F2FD; | |
} | |
.stChatMessage--user:hover { | |
background-color: #BBDEFB; | |
} | |
.stChatMessage--bot { | |
background-color: #EDE7F6; | |
} | |
.stChatMessage--bot:hover { | |
background-color: #D1C4E9; | |
} | |
textarea { | |
width: 100%; | |
padding: 1rem; | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1); | |
transition: border-color 0.3s ease, box-shadow 0.3s ease; | |
} | |
textarea:focus { | |
border-color: #4CAF50; | |
box-shadow: 0 0 5px rgba(76, 175, 80, 0.5); | |
} | |
.stButton > button { | |
width: 100%; | |
background-color: #4CAF50; | |
color: white; | |
border: none; | |
border-radius: 8px; | |
padding: 0.75rem; | |
font-size: 16px; | |
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); | |
transition: background-color 0.3s ease, box-shadow 0.3s ease; | |
} | |
.stButton > button:hover { | |
background-color: #45A049; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
} | |
</style> | |
<script> | |
const chatContainer = document.getElementById('chat-container'); | |
chatContainer.scrollTop = chatContainer.scrollHeight; | |
</script> | |
""", unsafe_allow_html=True) | |