EasyEdit / easyeditor /models /rome /layer_stats.py
ZJUPeng's picture
add continuous
d6682b6
raw
history blame
6.95 kB
import os
from pathlib import Path
import torch
from datasets import load_dataset
from tqdm.auto import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from ...util.globals import *
from ...util.nethook import Trace, set_requires_grad
from ...util.runningstats import CombinedStat, Mean, NormMean, SecondMoment, tally
from .tok_dataset import (
TokenizedDataset,
dict_to_,
flatten_masked_batch,
length_collation,
)
STAT_TYPES = {
"mom2": SecondMoment,
"mean": Mean,
"norm_mean": NormMean,
}
def main():
"""
Command-line utility to precompute cached stats.
"""
import argparse
parser = argparse.ArgumentParser(description="ROME Statistics Collector")
def aa(*args, **kwargs):
parser.add_argument(*args, **kwargs)
aa("--model_name", default="gpt2-xl", choices=["gpt2-xl", "EleutherAI/gpt-j-6B"])
aa("--dataset", default="wikipedia", choices=["wikitext", "wikipedia"])
aa("--layers", default=[17], type=lambda x: list(map(int, x.split(","))))
aa("--to_collect", default=["mom2"], type=lambda x: x.split(","))
aa("--sample_size", default=100000, type=lambda x: None if x == "all" else int(x))
aa("--batch_tokens", default=None, type=lambda x: None if x == "any" else int(x))
aa("--precision", default="float32", choices=["float64", "float32", "float16"])
aa("--stats_dir", default=STATS_DIR)
aa("--download", default=1, type=int, choices=[0, 1])
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModelForCausalLM.from_pretrained(args.model_name).eval().cuda()
set_requires_grad(False, model)
for layer_num in args.layers:
print(
f"Computing stats for layer {layer_num} of {args.model_name} "
f'over {args.sample_size or "all"} samples of {args.dataset}. '
"Note, the statistics are collected over the inputs to the second MLP layer, "
"or equivalently the outputs of the first MLP layer."
)
proj_layer_name = "c_proj" if "gpt2" in args.model_name else "fc_out"
layer_name = f"transformer.h.{layer_num}.mlp.{proj_layer_name}"
layer_stats(
model,
tokenizer,
layer_name,
args.stats_dir,
args.dataset,
args.to_collect,
sample_size=args.sample_size,
precision=args.precision,
batch_tokens=args.batch_tokens,
download=args.download,
)
def layer_stats(
model,
tokenizer,
layer_name,
stats_dir,
ds_name,
to_collect,
model_name=None,
sample_size=None,
precision=None,
batch_tokens=None,
download=True,
progress=tqdm,
force_recompute=False,
hparams=None
):
"""
Function to load or compute cached stats.
"""
def get_ds():
# Load_From_File
# from datasets import Dataset
# raw_ds = Dataset.from_file('XXX/XXX/wikipedia-train.arrow')
# raw_ds = {'train': raw_ds}
raw_ds = load_dataset(
ds_name,
dict(wikitext="wikitext-103-raw-v1", wikipedia="20200501.en")[ds_name]
)
if hasattr(model.config, 'n_positions'):
maxlen = model.config.n_positions
elif hasattr(model.config, 'max_sequence_length'):
maxlen = model.config.max_sequence_length
elif hasattr(model.config, 'max_position_embeddings'):
maxlen = model.config.max_position_embeddings
elif hasattr(model.config,'seq_length'):
maxlen = model.config.seq_length
else:
raise NotImplementedError
if hasattr(model.config, 'model_type') and 'mistral' in model.config.model_type:
if hasattr(model.config, 'sliding_window') and model.config.sliding_window:
maxlen = model.config.sliding_window or 4096
else:
maxlen = 4096
if batch_tokens is not None and batch_tokens < maxlen:
maxlen = batch_tokens
return TokenizedDataset(raw_ds["train"], tokenizer, maxlen=maxlen)
# Continue with computation of statistics
batch_size = 100 # Examine this many dataset texts at once
if hasattr(model.config, 'n_positions'):
npos = model.config.n_positions
elif hasattr(model.config, 'max_sequence_length'):
npos = model.config.max_sequence_length
elif hasattr(model.config, 'max_position_embeddings'):
npos = model.config.max_position_embeddings
elif hasattr(model.config,'seq_length'):
npos = model.config.seq_length
else:
raise NotImplementedError
if hasattr(model.config, 'model_type') and 'mistral' in model.config.model_type:
if hasattr(model.config, 'sliding_window') and model.config.sliding_window:
npos = model.config.sliding_window or 4096
else:
npos = 4096
if batch_tokens is None:
batch_tokens = npos * 3 # Sort and divide into batches with this many tokens
if precision is None:
precision = "float64"
dtype = getattr(torch, precision)
size_suffix = "" if sample_size is None else f"_{sample_size}"
if batch_tokens < npos:
size_suffix = "_t{batch_tokens}" + size_suffix
if model_name is None:
# model_name = model.config._name_or_path.replace("/", "_")
model_name = model.config._name_or_path.rsplit("/")[-1]
stats_dir = Path(stats_dir)
file_extension = f"{model_name}/{ds_name}_stats/{layer_name}_{precision}_{'-'.join(sorted(to_collect))}{size_suffix}.npz"
filename = stats_dir / file_extension
print(f"Computing Cov locally....")
ds = get_ds() if not filename.exists() else None
if progress is None:
progress = lambda x: x
stat = CombinedStat(**{k: STAT_TYPES[k]() for k in to_collect})
loader = tally(
stat,
ds,
cache=(filename if not force_recompute else None),
sample_size=sample_size,
batch_size=batch_size,
collate_fn=length_collation(batch_tokens),
pin_memory=True,
random_sample=1,
num_workers=2,
)
batch_count = -(-(sample_size or len(ds)) // batch_size)
with torch.no_grad():
for batch_group in progress(loader, total=batch_count):
for batch in batch_group:
batch = dict_to_(batch, f"cuda:{hparams.device}")
with Trace(
model, layer_name, retain_input=True, retain_output=False, stop=True
) as tr:
model(**batch)
feats = flatten_masked_batch(tr.input, batch["attention_mask"])
# feats = flatten_masked_batch(tr.output, batch["attention_mask"])
feats = feats.to(dtype=dtype)
stat.add(feats)
return stat
if __name__ == "__main__":
main()