zjrwtx commited on
Commit
cd1af34
·
1 Parent(s): 00b7c1f

Upload 6 files

Browse files
Files changed (6) hide show
  1. LICENSE +201 -0
  2. README.md +21 -13
  3. app.py +188 -0
  4. dockerfile +51 -0
  5. maintest.py +179 -0
  6. requirements.txt +11 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,13 +1,21 @@
1
- ---
2
- title: Identification
3
- emoji: 💻
4
- colorFrom: gray
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 4.5.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
1
+ # Resume Photo Maker
2
+
3
+ [![Hugging Face Spaces](https://img.shields.io/badge/🤗%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/guocheng66/resume-photo-maker)
4
+
5
+ Make a resume photo with a simple python script and two lightweight deep neural networks.
6
+
7
+ <img src="images/elon.jpg" width="200">
8
+ <img src="assets/masked_resume_photo_0.jpg" width="200">
9
+
10
+ ## Set up and run
11
+ ```bash
12
+ pip install -r requirements.txt
13
+
14
+ python resume_photo_maker.py --image images/elon.jpg --background_color 255 255 255
15
+ ```
16
+ There is a live demo on Hugging Face.[Try it now](https://huggingface.co/spaces/guocheng66/resume-photo-maker).
17
+
18
+ ## Acknowledgements
19
+ https://github.com/ShiqiYu/libfacedetection
20
+
21
+ https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.9/contrib/PP-HumanSeg
app.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import ImageColor
3
+
4
+ import onnxruntime
5
+ import cv2
6
+ import numpy as np
7
+
8
+ # The common resume photo size is 35mmx45mm
9
+ RESUME_PHOTO_W = 350
10
+ RESUME_PHOTO_H = 450
11
+
12
+
13
+ # modified from https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/yunet.py
14
+ class YuNet:
15
+ def __init__(
16
+ self,
17
+ modelPath,
18
+ inputSize=[320, 320],
19
+ confThreshold=0.6,
20
+ nmsThreshold=0.3,
21
+ topK=5000,
22
+ backendId=0,
23
+ targetId=0,
24
+ ):
25
+ self._modelPath = modelPath
26
+ self._inputSize = tuple(inputSize) # [w, h]
27
+ self._confThreshold = confThreshold
28
+ self._nmsThreshold = nmsThreshold
29
+ self._topK = topK
30
+ self._backendId = backendId
31
+ self._targetId = targetId
32
+
33
+ self._model = cv2.FaceDetectorYN.create(
34
+ model=self._modelPath,
35
+ config="",
36
+ input_size=self._inputSize,
37
+ score_threshold=self._confThreshold,
38
+ nms_threshold=self._nmsThreshold,
39
+ top_k=self._topK,
40
+ backend_id=self._backendId,
41
+ target_id=self._targetId,
42
+ )
43
+
44
+ @property
45
+ def name(self):
46
+ return self.__class__.__name__
47
+
48
+ def setBackendAndTarget(self, backendId, targetId):
49
+ self._backendId = backendId
50
+ self._targetId = targetId
51
+ self._model = cv2.FaceDetectorYN.create(
52
+ model=self._modelPath,
53
+ config="",
54
+ input_size=self._inputSize,
55
+ score_threshold=self._confThreshold,
56
+ nms_threshold=self._nmsThreshold,
57
+ top_k=self._topK,
58
+ backend_id=self._backendId,
59
+ target_id=self._targetId,
60
+ )
61
+
62
+ def setInputSize(self, input_size):
63
+ self._model.setInputSize(tuple(input_size))
64
+
65
+ def infer(self, image):
66
+ # Forward
67
+ faces = self._model.detect(image)
68
+ return faces[1]
69
+
70
+
71
+ class ONNXModel:
72
+ def __init__(self, model_path, input_w, input_h):
73
+ self.model = onnxruntime.InferenceSession(model_path)
74
+ self.input_w = input_w
75
+ self.input_h = input_h
76
+
77
+ def preprocess(self, rgb, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
78
+ # convert the input data into the float32 input
79
+ img_data = (
80
+ np.array(cv2.resize(rgb, (self.input_w, self.input_h)))
81
+ .transpose(2, 0, 1)
82
+ .astype("float32")
83
+ )
84
+
85
+ # normalize
86
+ norm_img_data = np.zeros(img_data.shape).astype("float32")
87
+
88
+ for i in range(img_data.shape[0]):
89
+ norm_img_data[i, :, :] = img_data[i, :, :] / 255
90
+ norm_img_data[i, :, :] = (norm_img_data[i, :, :] - mean[i]) / std[i]
91
+
92
+ # add batch channel
93
+ norm_img_data = norm_img_data.reshape(1, 3, self.input_h, self.input_w).astype(
94
+ "float32"
95
+ )
96
+ return norm_img_data
97
+
98
+ def forward(self, image):
99
+ input_data = self.preprocess(image)
100
+ output_data = self.model.run(["argmax_0.tmp_0"], {"x": input_data})
101
+
102
+ return output_data
103
+
104
+
105
+ def make_resume_photo(rgb, background_color):
106
+ h, w, _ = rgb.shape
107
+ bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
108
+
109
+ # Initialize models
110
+ face_detector = YuNet("models/face_detection_yunet_2023mar.onnx")
111
+ face_detector.setInputSize([w, h])
112
+ human_segmentor = ONNXModel(
113
+ "models/human_pp_humansegv2_lite_192x192_inference_model.onnx", 192, 192
114
+ )
115
+
116
+ # yunet uses opencv bgr image format
117
+ detections = face_detector.infer(bgr)
118
+
119
+ results = []
120
+ for idx, det in enumerate(detections):
121
+ # bounding box
122
+ pt1 = np.array((det[0], det[1]))
123
+ pt2 = np.array((det[0] + det[2], det[1] + det[3]))
124
+
125
+ # face landmarks
126
+ landmarks = det[4:14].reshape((5, 2))
127
+ right_eye = landmarks[0]
128
+ left_eye = landmarks[1]
129
+
130
+ angle = np.arctan2(right_eye[1] - left_eye[1], (right_eye[0] - left_eye[0]))
131
+ rmat = cv2.getRotationMatrix2D((0, 0), -angle, 1)
132
+
133
+ # apply rotation
134
+ rotated_bgr = cv2.warpAffine(bgr, rmat, (bgr.shape[1], bgr.shape[0]))
135
+ rotated_pt1 = rmat[:, :-1] @ pt1
136
+ rotated_pt2 = rmat[:, :-1] @ pt2
137
+
138
+ face_w, face_h = rotated_pt2 - rotated_pt1
139
+ up_length = int(face_h / 4)
140
+ down_length = int(face_h / 3)
141
+ crop_h = face_h + up_length + down_length
142
+ crop_w = int(crop_h * (RESUME_PHOTO_W / RESUME_PHOTO_H))
143
+
144
+ pt1 = np.array(
145
+ (rotated_pt1[0] - (crop_w - face_w) / 2, rotated_pt1[1] - up_length)
146
+ ).astype(np.int32)
147
+ pt2 = np.array((pt1[0] + crop_w, pt1[1] + crop_h)).astype(np.int32)
148
+
149
+ resume_photo = rotated_bgr[pt1[1] : pt2[1], pt1[0] : pt2[0], :]
150
+
151
+ rgb = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB)
152
+ mask = human_segmentor.forward(rgb)
153
+ mask = mask[0].transpose(1, 2, 0)
154
+ mask = cv2.resize(
155
+ mask.astype(np.uint8), (resume_photo.shape[1], resume_photo.shape[0])
156
+ )
157
+
158
+ resume_photo = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB)
159
+ resume_photo[mask == 0] = ImageColor.getcolor(background_color, "RGB")
160
+ resume_photo = cv2.resize(resume_photo, (RESUME_PHOTO_W, RESUME_PHOTO_H))
161
+ results.append(resume_photo)
162
+
163
+ return results
164
+
165
+
166
+ title = "AI证件照:任意照片生成证件照||公众号:正经人王同学"
167
+
168
+ demo = gr.Interface(
169
+ fn=make_resume_photo,
170
+ inputs=[
171
+ gr.Image(type="numpy", label="input"),
172
+ gr.ColorPicker(label="设置背景颜色"),
173
+ ],
174
+ outputs=gr.Gallery(label="output"),
175
+ examples=[
176
+ ["images/queen.png", "#FFFFFF"],
177
+ ["images/elon.png", "#FFFFFF"],
178
+ ["images/openai.jpg", "#FFFFFF"],
179
+ ["images/sam.png", "#FFFFFF"],
180
+
181
+ ],
182
+ title=title,
183
+ allow_flagging="never",
184
+ article="<p style='text-align: center;'><a href='https://mp.weixin.qq.com/s/SvQT5elBPuPYJ0CJ_LlBYA' target='_blank'>公众号:正经人王同学</a></p>",
185
+ )
186
+
187
+ if __name__ == "__main__":
188
+ demo.launch()
dockerfile ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # # Use an official Python 3.10 runtime as a parent image
2
+ # FROM python:3.10-slim
3
+
4
+ # # Set the working directory in the container
5
+ # WORKDIR /usr/src/app
6
+
7
+ # # Copy the current directory contents into the container at /usr/src/app
8
+ # COPY . .
9
+
10
+ # # Install any needed packages specified in requirements.txt
11
+ # RUN pip install --no-cache-dir -r requirements.txt
12
+
13
+ # # Make port 7860 available to the world outside this container
14
+ # EXPOSE 7860
15
+
16
+ # # Run app.py when the container launches
17
+ # CMD ["python","./app.py"]
18
+
19
+
20
+
21
+ # Use an official Python 3.10 runtime as a parent image
22
+ FROM python:3.10-slim
23
+
24
+ # Set the working directory in the container
25
+ WORKDIR /usr/src/app
26
+
27
+
28
+
29
+
30
+ # Copy the current directory contents into the container at /usr/src/app
31
+ COPY . .
32
+
33
+ # Install any needed packages specified in requirements.txt
34
+
35
+ # RUN pip install -U pip
36
+ # https://pypi.tuna.tsinghua.edu.cn/simple
37
+ # RUN pip config set global.index-url http://mirrors.aliyun.com/pypi/simple
38
+ # RUN pip config set install.trusted-host mirrors.aliyun.com
39
+ RUN pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
40
+ RUN pip config set install.trusted-host pypi.tuna.tsinghua.edu.cn
41
+
42
+ RUN pip install --no-cache-dir -r requirements.txt
43
+
44
+ RUN apt-get update && apt-get install -y libgl1-mesa-glx
45
+
46
+ # Make port 7860 available to the world outside this container
47
+ EXPOSE 7860
48
+
49
+ # Run app.py when the container launches
50
+ CMD ["python", "./app.py"]
51
+
maintest.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import onnxruntime
2
+ import cv2
3
+ import numpy as np
4
+ import argparse
5
+
6
+ # The common resume photo size is 35mmx45mm
7
+ RESUME_PHOTO_W = 350
8
+ RESUME_PHOTO_H = 450
9
+
10
+
11
+ # modified from https://github.com/opencv/opencv_zoo/blob/main/models/face_detection_yunet/yunet.py
12
+ class YuNet:
13
+ def __init__(
14
+ self,
15
+ modelPath,
16
+ inputSize=[320, 320],
17
+ confThreshold=0.6,
18
+ nmsThreshold=0.3,
19
+ topK=5000,
20
+ backendId=0,
21
+ targetId=0,
22
+ ):
23
+ self._modelPath = modelPath
24
+ self._inputSize = tuple(inputSize) # [w, h]
25
+ self._confThreshold = confThreshold
26
+ self._nmsThreshold = nmsThreshold
27
+ self._topK = topK
28
+ self._backendId = backendId
29
+ self._targetId = targetId
30
+
31
+ self._model = cv2.FaceDetectorYN.create(
32
+ model=self._modelPath,
33
+ config="",
34
+ input_size=self._inputSize,
35
+ score_threshold=self._confThreshold,
36
+ nms_threshold=self._nmsThreshold,
37
+ top_k=self._topK,
38
+ backend_id=self._backendId,
39
+ target_id=self._targetId,
40
+ )
41
+
42
+ @property
43
+ def name(self):
44
+ return self.__class__.__name__
45
+
46
+ def setBackendAndTarget(self, backendId, targetId):
47
+ self._backendId = backendId
48
+ self._targetId = targetId
49
+ self._model = cv2.FaceDetectorYN.create(
50
+ model=self._modelPath,
51
+ config="",
52
+ input_size=self._inputSize,
53
+ score_threshold=self._confThreshold,
54
+ nms_threshold=self._nmsThreshold,
55
+ top_k=self._topK,
56
+ backend_id=self._backendId,
57
+ target_id=self._targetId,
58
+ )
59
+
60
+ def setInputSize(self, input_size):
61
+ self._model.setInputSize(tuple(input_size))
62
+
63
+ def infer(self, image):
64
+ # Forward
65
+ faces = self._model.detect(image)
66
+ return faces[1]
67
+
68
+
69
+ class ONNXModel:
70
+ def __init__(self, model_path, input_w, input_h):
71
+ self.model = onnxruntime.InferenceSession(model_path)
72
+ self.input_w = input_w
73
+ self.input_h = input_h
74
+
75
+ def preprocess(self, rgb, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
76
+ # convert the input data into the float32 input
77
+ img_data = (
78
+ np.array(cv2.resize(rgb, (self.input_w, self.input_h)))
79
+ .transpose(2, 0, 1)
80
+ .astype("float32")
81
+ )
82
+
83
+ # normalize
84
+ norm_img_data = np.zeros(img_data.shape).astype("float32")
85
+
86
+ for i in range(img_data.shape[0]):
87
+ norm_img_data[i, :, :] = img_data[i, :, :] / 255
88
+ norm_img_data[i, :, :] = (norm_img_data[i, :, :] - mean[i]) / std[i]
89
+
90
+ # add batch channel
91
+ norm_img_data = norm_img_data.reshape(1, 3, self.input_h, self.input_w).astype(
92
+ "float32"
93
+ )
94
+ return norm_img_data
95
+
96
+ def forward(self, image):
97
+ input_data = self.preprocess(image)
98
+ output_data = self.model.run(["argmax_0.tmp_0"], {"x": input_data})
99
+
100
+ return output_data
101
+
102
+
103
+ def parse_args():
104
+ parser = argparse.ArgumentParser(description="Resume Photo Maker")
105
+ parser.add_argument(
106
+ "--background_color",
107
+ "-bg",
108
+ nargs="+",
109
+ type=int,
110
+ default=(255, 255, 255),
111
+ help="Set the background color RGB values.",
112
+ )
113
+ parser.add_argument(
114
+ "--image", "-i", type=str, default="images/elon.jpg", help="Input image path."
115
+ )
116
+
117
+ args = parser.parse_args()
118
+
119
+ return args
120
+
121
+
122
+ if __name__ == "__main__":
123
+ args = parse_args()
124
+
125
+ bgr = cv2.imread(args.image)
126
+ h, w, _ = bgr.shape
127
+
128
+ # Initialize models
129
+ face_detector = YuNet("models/face_detection_yunet_2023mar.onnx")
130
+ face_detector.setInputSize([w, h])
131
+ human_segmentor = ONNXModel(
132
+ "models/human_pp_humansegv2_lite_192x192_inference_model.onnx", 192, 192
133
+ )
134
+
135
+ # yunet uses opencv bgr image format
136
+ detections = face_detector.infer(bgr)
137
+
138
+ for idx, det in enumerate(detections):
139
+ # bounding box
140
+ pt1 = np.array((det[0], det[1]))
141
+ pt2 = np.array((det[0] + det[2], det[1] + det[3]))
142
+
143
+ # face landmarks
144
+ landmarks = det[4:14].reshape((5, 2))
145
+ right_eye = landmarks[0]
146
+ left_eye = landmarks[1]
147
+
148
+ angle = np.arctan2(right_eye[1] - left_eye[1], (right_eye[0] - left_eye[0]))
149
+ rmat = cv2.getRotationMatrix2D((0, 0), -angle, 1)
150
+
151
+ # apply rotation
152
+ rotated_bgr = cv2.warpAffine(bgr, rmat, (bgr.shape[1], bgr.shape[0]))
153
+ rotated_pt1 = rmat[:, :-1] @ pt1
154
+ rotated_pt2 = rmat[:, :-1] @ pt2
155
+
156
+ face_w, face_h = rotated_pt2 - rotated_pt1
157
+ up_length = int(face_h / 4)
158
+ down_length = int(face_h / 3)
159
+ crop_h = face_h + up_length + down_length
160
+ crop_w = int(crop_h * (RESUME_PHOTO_W / RESUME_PHOTO_H))
161
+
162
+ pt1 = np.array(
163
+ (rotated_pt1[0] - (crop_w - face_w) / 2, rotated_pt1[1] - up_length)
164
+ ).astype(np.int32)
165
+ pt2 = np.array((pt1[0] + crop_w, pt1[1] + crop_h)).astype(np.int32)
166
+
167
+ resume_photo = rotated_bgr[pt1[1] : pt2[1], pt1[0] : pt2[0], :]
168
+
169
+ rgb = cv2.cvtColor(resume_photo, cv2.COLOR_BGR2RGB)
170
+ mask = human_segmentor.forward(rgb)
171
+ mask = mask[0].transpose(1, 2, 0)
172
+ mask = cv2.resize(
173
+ mask.astype(np.uint8), (resume_photo.shape[1], resume_photo.shape[0])
174
+ )
175
+
176
+ resume_photo[mask == 0] = args.background_color
177
+
178
+ resume_photo = cv2.resize(resume_photo, (RESUME_PHOTO_W, RESUME_PHOTO_H))
179
+ cv2.imwrite(f"masked_resume_photo_{idx}.jpg", resume_photo)
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ coloredlogs==15.0.1
2
+ flatbuffers==23.5.26
3
+ humanfriendly==10.0
4
+ mpmath==1.3.0
5
+ numpy==1.26.1
6
+ onnxruntime==1.16.1
7
+ opencv-python==4.8.1.78
8
+ packaging==23.2
9
+ protobuf==4.25.0
10
+ sympy==1.12
11
+ gradio