|
from easydict import EasyDict |
|
|
|
hopper_trex_sac_config = dict( |
|
exp_name='hopper_trex_sac_seed0', |
|
env=dict( |
|
env_id='Hopper-v3', |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
collector_env_num=1, |
|
evaluator_env_num=8, |
|
n_evaluator_episode=8, |
|
stop_value=6000, |
|
), |
|
reward_model=dict( |
|
learning_rate=1e-5, |
|
min_snippet_length=30, |
|
max_snippet_length=100, |
|
checkpoint_min=1000, |
|
checkpoint_max=9000, |
|
checkpoint_step=1000, |
|
update_per_collect=1, |
|
|
|
|
|
|
|
|
|
expert_model_path='model_path_placeholder', |
|
|
|
reward_model_path='data_path_placeholder + /Hopper.params', |
|
|
|
|
|
|
|
|
|
data_path='data_path_placeholder', |
|
), |
|
policy=dict( |
|
cuda=True, |
|
random_collect_size=10000, |
|
model=dict( |
|
obs_shape=11, |
|
action_shape=3, |
|
twin_critic=True, |
|
action_space='reparameterization', |
|
actor_head_hidden_size=256, |
|
critic_head_hidden_size=256, |
|
), |
|
learn=dict( |
|
update_per_collect=1, |
|
batch_size=256, |
|
learning_rate_q=1e-3, |
|
learning_rate_policy=1e-3, |
|
learning_rate_alpha=3e-4, |
|
ignore_done=False, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
alpha=0.2, |
|
reparameterization=True, |
|
auto_alpha=False, |
|
), |
|
collect=dict( |
|
n_sample=1, |
|
unroll_len=1, |
|
), |
|
command=dict(), |
|
eval=dict(), |
|
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), |
|
), |
|
) |
|
|
|
hopper_trex_sac_config = EasyDict(hopper_trex_sac_config) |
|
main_config = hopper_trex_sac_config |
|
|
|
hopper_trex_sac_create_config = dict( |
|
env=dict( |
|
type='mujoco', |
|
import_names=['dizoo.mujoco.envs.mujoco_env'], |
|
), |
|
env_manager=dict(type='subprocess'), |
|
policy=dict( |
|
type='sac', |
|
import_names=['ding.policy.sac'], |
|
), |
|
replay_buffer=dict(type='naive', ), |
|
) |
|
hopper_trex_sac_create_config = EasyDict(hopper_trex_sac_create_config) |
|
create_config = hopper_trex_sac_create_config |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
import argparse |
|
import torch |
|
from ding.entry import trex_collecting_data |
|
from ding.entry import serial_pipeline_trex |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--cfg', type=str, default='please enter abs path for this file') |
|
parser.add_argument('--seed', type=int, default=0) |
|
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') |
|
args = parser.parse_args() |
|
|
|
trex_collecting_data(args) |
|
serial_pipeline_trex([main_config, create_config]) |
|
|