|
import os |
|
import gym |
|
import torch |
|
from tensorboardX import SummaryWriter |
|
from easydict import EasyDict |
|
from functools import partial |
|
|
|
from ding.config import compile_config |
|
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer |
|
from ding.envs import BaseEnvManager |
|
from ding.envs import get_vec_env_setting, create_env_manager |
|
from ding.policy import DDPGPolicy |
|
from ding.utils import set_pkg_seed |
|
|
|
cartpole_balance_ddpg_config = dict( |
|
exp_name='dmc2gym_cartpole_balance_ddpg_eval', |
|
env=dict( |
|
env_id='dmc2gym_cartpole_balance', |
|
domain_name='cartpole', |
|
task_name='balance', |
|
from_pixels=False, |
|
norm_obs=dict(use_norm=False, ), |
|
norm_reward=dict(use_norm=False, ), |
|
collector_env_num=1, |
|
evaluator_env_num=8, |
|
use_act_scale=True, |
|
n_evaluator_episode=8, |
|
replay_path='./dmc2gym_cartpole_balance_ddpg_eval/video', |
|
stop_value=1000, |
|
), |
|
policy=dict( |
|
cuda=True, |
|
random_collect_size=2560, |
|
load_path="./dmc2gym_cartpole_balance_ddpg/ckpt/iteration_10000.pth.tar", |
|
model=dict( |
|
obs_shape=5, |
|
action_shape=1, |
|
twin_critic=False, |
|
actor_head_hidden_size=128, |
|
critic_head_hidden_size=128, |
|
action_space='regression', |
|
), |
|
learn=dict( |
|
update_per_collect=1, |
|
batch_size=128, |
|
learning_rate_actor=1e-3, |
|
learning_rate_critic=1e-3, |
|
ignore_done=False, |
|
target_theta=0.005, |
|
discount_factor=0.99, |
|
actor_update_freq=1, |
|
noise=False, |
|
), |
|
collect=dict( |
|
n_sample=1, |
|
unroll_len=1, |
|
noise_sigma=0.1, |
|
), |
|
other=dict(replay_buffer=dict(replay_buffer_size=10000, ), ), |
|
) |
|
) |
|
cartpole_balance_ddpg_config = EasyDict(cartpole_balance_ddpg_config) |
|
main_config = cartpole_balance_ddpg_config |
|
|
|
cartpole_balance_create_config = dict( |
|
env=dict( |
|
type='dmc2gym', |
|
import_names=['dizoo.dmc2gym.envs.dmc2gym_env'], |
|
), |
|
env_manager=dict(type='base'), |
|
policy=dict( |
|
type='ddpg', |
|
import_names=['ding.policy.ddpg'], |
|
), |
|
replay_buffer=dict(type='naive', ), |
|
) |
|
cartpole_balance_create_config = EasyDict(cartpole_balance_create_config) |
|
create_config = cartpole_balance_create_config |
|
|
|
|
|
def main(cfg, create_cfg, seed=0): |
|
cfg = compile_config( |
|
cfg, |
|
BaseEnvManager, |
|
DDPGPolicy, |
|
BaseLearner, |
|
SampleSerialCollector, |
|
InteractionSerialEvaluator, |
|
AdvancedReplayBuffer, |
|
create_cfg=create_cfg, |
|
save_cfg=True |
|
) |
|
|
|
create_cfg.policy.type = create_cfg.policy.type + '_command' |
|
env_fn = None |
|
cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) |
|
|
|
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) |
|
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) |
|
|
|
evaluator_env.enable_save_replay(cfg.env.replay_path) |
|
|
|
|
|
evaluator_env.seed(seed, dynamic_seed=False) |
|
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) |
|
|
|
|
|
policy = DDPGPolicy(cfg.policy) |
|
policy.eval_mode.load_state_dict(torch.load(cfg.policy.load_path, map_location='cpu')) |
|
|
|
|
|
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) |
|
evaluator = InteractionSerialEvaluator( |
|
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name |
|
) |
|
evaluator.eval() |
|
|
|
|
|
if __name__ == "__main__": |
|
main(main_config, create_config, seed=0) |
|
|