gomoku / DI-engine /dizoo /dmc2gym /entry /dmc2gym_sac_state_main.py
zjowowen's picture
init space
079c32c
from ditk import logging
from ding.model import ContinuousQAC
from ding.policy import SACPolicy
from ding.envs import BaseEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import data_pusher, StepCollector, interaction_evaluator, \
CkptSaver, OffPolicyLearner, termination_checker
from ding.utils import set_pkg_seed
from dizoo.dmc2gym.envs.dmc2gym_env import DMC2GymEnv
from dizoo.dmc2gym.config.dmc2gym_sac_state_config import main_config, create_config
import numpy as np
from tensorboardX import SummaryWriter
import os
def main():
logging.getLogger().setLevel(logging.INFO)
main_config.exp_name = 'dmc2gym_sac_state_nseed_5M'
main_config.policy.cuda = True
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
num_seed = 4
for seed_i in range(num_seed):
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'seed' + str(seed_i)))
with task.start(async_mode=False, ctx=OnlineRLContext()):
collector_env = BaseEnvManagerV2(
env_fn=[lambda: DMC2GymEnv(cfg.env) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
evaluator_env = BaseEnvManagerV2(
env_fn=[lambda: DMC2GymEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = ContinuousQAC(**cfg.policy.model)
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
policy = SACPolicy(cfg.policy, model=model)
def _add_scalar(ctx):
if ctx.eval_value != -np.inf:
tb_logger.add_scalar('evaluator_step/reward', ctx.eval_value, global_step=ctx.env_step)
collector_rewards = [ctx.trajectories[i]['reward'] for i in range(len(ctx.trajectories))]
collector_mean_reward = sum(collector_rewards) / len(ctx.trajectories)
# collector_max_reward = max(collector_rewards)
# collector_min_reward = min(collector_rewards)
tb_logger.add_scalar('collecter_step/mean_reward', collector_mean_reward, global_step=ctx.env_step)
# tb_logger.add_scalar('collecter_step/max_reward', collector_max_reward, global_step= ctx.env_step)
# tb_logger.add_scalar('collecter_step/min_reward', collector_min_reward, global_step= ctx.env_step)
tb_logger.add_scalar(
'collecter_step/avg_env_step_per_episode',
ctx.env_step / ctx.env_episode,
global_step=ctx.env_step
)
def _add_train_scalar(ctx):
len_train = len(ctx.train_output)
cur_lr_q_avg = sum([ctx.train_output[i]['cur_lr_q'] for i in range(len_train)]) / len_train
cur_lr_p_avg = sum([ctx.train_output[i]['cur_lr_p'] for i in range(len_train)]) / len_train
critic_loss_avg = sum([ctx.train_output[i]['critic_loss'] for i in range(len_train)]) / len_train
policy_loss_avg = sum([ctx.train_output[i]['policy_loss'] for i in range(len_train)]) / len_train
total_loss_avg = sum([ctx.train_output[i]['total_loss'] for i in range(len_train)]) / len_train
tb_logger.add_scalar('learner_step/cur_lr_q_avg', cur_lr_q_avg, global_step=ctx.env_step)
tb_logger.add_scalar('learner_step/cur_lr_p_avg', cur_lr_p_avg, global_step=ctx.env_step)
tb_logger.add_scalar('learner_step/critic_loss_avg', critic_loss_avg, global_step=ctx.env_step)
tb_logger.add_scalar('learner_step/policy_loss_avg', policy_loss_avg, global_step=ctx.env_step)
tb_logger.add_scalar('learner_step/total_loss_avg', total_loss_avg, global_step=ctx.env_step)
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(
StepCollector(
cfg, policy.collect_mode, collector_env, random_collect_size=cfg.policy.random_collect_size
)
)
task.use(_add_scalar)
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_))
task.use(_add_train_scalar)
task.use(CkptSaver(policy, cfg.exp_name, train_freq=int(1e5)))
task.use(termination_checker(max_env_step=int(5e6)))
task.run()
if __name__ == "__main__":
main()