zjowowen's picture
init space
079c32c
# Code Reference: https://github.com/OptMLGroup/DeepBeerInventory-RL.
import numpy as np
from random import randint
from .BGAgent import Agent
from matplotlib import rc
rc('text', usetex=True)
from .plotting import plotting, savePlot
import matplotlib.pyplot as plt
import os
import time
from time import gmtime, strftime
class clBeerGame(object):
def __init__(self, config):
self.config = config
self.curGame = 0 # The number associated with the current game (counter of the game)
self.curTime = 0
self.totIterPlayed = 0 # total iterations of the game, played so far in this and previous games
self.players = self.createAgent() # create the agents
self.T = 0
self.demand = []
self.ifOptimalSolExist = self.config.ifOptimalSolExist
self.getOptimalSol()
self.totRew = 0 # it is reward of all players obtained for the current player.
self.resultTest = []
self.runnerMidlResults = [] # stores the results to use in runner comparisons
self.runnerFinlResults = [] # stores the results to use in runner comparisons
self.middleTestResult = [
] # stores the whole middle results of bs, Strm, and random to avoid doing same tests multiple of times.
self.runNumber = 0 # the runNumber which is used when use runner
self.strNum = 0 # the runNumber which is used when use runner
# createAgent : Create agent objects (agentNum,IL,OO,c_h,c_p,type,config)
def createAgent(self):
agentTypes = self.config.agentTypes
return [
Agent(
i, self.config.ILInit[i], self.config.AOInit, self.config.ASInit[i], self.config.c_h[i],
self.config.c_p[i], self.config.eta[i], agentTypes[i], self.config
) for i in range(self.config.NoAgent)
]
# planHorizon : Find a random planning horizon
def planHorizon(self):
# TLow: minimum number for the planning horizon # TUp: maximum number for the planning horizon
# output: The planning horizon which is chosen randomly.
return randint(self.config.TLow, self.config.TUp)
# this function resets the game for start of the new game
def resetGame(self, demand: np.ndarray):
self.demand = demand
self.curTime = 0
self.curGame += 1
self.totIterPlayed += self.T
self.T = self.planHorizon()
# reset the required information of player for each episode
for k in range(0, self.config.NoAgent):
self.players[k].resetPlayer(self.T)
# update OO when there are initial IL,AO,AS
self.update_OO()
# correction on cost at time T according to the cost of the other players
def getTotRew(self):
totRew = 0
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
for i in range(self.config.NoAgent):
self.players[i].curReward += self.players[i].eta * (totRew - self.players[i].cumReward) # /(self.T)
# make correction to the rewards in the experience replay for all iterations of current game
def distTotReward(self, role: int):
totRew = 0
optRew = 0.1 # why?
for i in range(self.config.NoAgent):
# sum all rewards for the agents and make correction
totRew += self.players[i].cumReward
totRew += optRew
return totRew, self.players[role].cumReward
def getAction(self, k: int, action: np.ndarray, playType="train"):
if playType == "train":
if self.players[k].compType == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
self.players[k].action[action] = 1
elif self.players[k].compType == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)\
- max(0, round(self.players[k].AO[self.curTime] + \
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) + \
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compType == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compType == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
else:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
else:
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt) - \
max(0, (self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime])))))] = 1
elif playType == "test":
if self.players[k].compTypeTest == "srdqn":
self.players[k].action = np.zeros(self.config.actionListLen)
self.players[k].action = self.players[k].brain.getDNNAction(self.playType)
elif self.players[k].compTypeTest == "Strm":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
self.players[k].action[np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,round(self.players[k].AO[self.curTime] +\
self.players[k].alpha_b*(self.players[k].IL - self.players[k].a_b) +\
self.players[k].betta_b*(self.players[k].OO - self.players[k].b_b)))))] = 1
elif self.players[k].compTypeTest == "rnd":
self.players[k].action = np.zeros(self.config.actionListLen)
a = np.random.randint(self.config.actionListLen)
self.players[k].action[a] = 1
elif self.players[k].compTypeTest == "bs":
self.players[k].action = np.zeros(self.config.actionListLenOpt)
if self.config.demandDistribution == 2:
if self.curTime and self.config.use_initial_BS <= 4:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].int_bslBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
self.players[k].action [np.argmin(np.abs(np.array(self.config.actionListOpt)-\
max(0,(self.players[k].bsBaseStock - (self.players[k].IL + self.players[k].OO - self.players[k].AO[self.curTime]))) ))] = 1
else:
# not a valid player is defined.
raise Exception('The player type is not defined or it is not a valid type.!')
def next(self):
# get a random leadtime
leadTimeIn = randint(
self.config.leadRecItemLow[self.config.NoAgent - 1], self.config.leadRecItemUp[self.config.NoAgent - 1]
)
# handle the most upstream recieved shipment
self.players[self.config.NoAgent - 1].AS[self.curTime +
leadTimeIn] += self.players[self.config.NoAgent -
1].actionValue(self.curTime)
for k in range(self.config.NoAgent - 1, -1, -1): # [3,2,1,0]
# get current IL and Backorder
current_IL = max(0, self.players[k].IL)
current_backorder = max(0, -self.players[k].IL)
# TODO: We have get the AS and AO from the UI and update our AS and AO, so that code update the corresponding variables
# increase IL and decrease OO based on the action, for the next period
self.players[k].recieveItems(self.curTime)
# observe the reward
possible_shipment = min(
current_IL + self.players[k].AS[self.curTime], current_backorder + self.players[k].AO[self.curTime]
)
# plan arrivals of the items to the downstream agent
if self.players[k].agentNum > 0:
leadTimeIn = randint(self.config.leadRecItemLow[k - 1], self.config.leadRecItemUp[k - 1])
self.players[k - 1].AS[self.curTime + leadTimeIn] += possible_shipment
# update IL
self.players[k].IL -= self.players[k].AO[self.curTime]
# observe the reward
self.players[k].getReward()
self.players[k].hist[-1][-2] = self.players[k].curReward
self.players[k].hist2[-1][-2] = self.players[k].curReward
# update next observation
self.players[k].nextObservation = self.players[k].getCurState(self.curTime + 1)
if self.config.ifUseTotalReward:
# correction on cost at time T
if self.curTime == self.T:
self.getTotRew()
self.curTime += 1
def handelAction(self, action: np.ndarray, playType="train"):
# get random lead time
leadTime = randint(self.config.leadRecOrderLow[0], self.config.leadRecOrderUp[0])
# set AO
self.players[0].AO[self.curTime] += self.demand[self.curTime]
for k in range(0, self.config.NoAgent):
self.getAction(k, action, playType)
self.players[k].srdqnBaseStock += [self.players[k].actionValue( \
self.curTime) + self.players[k].IL + self.players[k].OO]
# update hist for the plots
self.players[k].hist += [[self.curTime, self.players[k].IL, self.players[k].OO,\
self.players[k].actionValue(self.curTime), self.players[k].curReward, self.players[k].srdqnBaseStock[-1]]]
if self.players[k].compType == "srdqn":
self.players[k].hist2 += [[self.curTime, self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime), self.players[k].curReward, \
self.config.actionList[np.argmax(self.players[k].action)]]]
else:
self.players[k].hist2 += [[self.curTime, self.players[k].IL, self.players[k].OO, self.players[k].AO[self.curTime], self.players[k].AS[self.curTime], \
self.players[k].actionValue(self.curTime), self.players[k].curReward, 0]]
# updates OO and AO at time t+1
self.players[k].OO += self.players[k].actionValue(self.curTime) # open order level update
leadTime = randint(self.config.leadRecOrderLow[k], self.config.leadRecOrderUp[k])
if self.players[k].agentNum < self.config.NoAgent - 1:
self.players[k + 1].AO[self.curTime + leadTime] += self.players[k].actionValue(
self.curTime
) # open order level update
# check the Shang and Song (2003) condition, and if it works, obtains the base stock policy values for each agent
def getOptimalSol(self):
# if self.config.NoAgent !=1:
if self.config.NoAgent != 1 and 1 == 2:
# check the Shang and Song (2003) condition.
for k in range(self.config.NoAgent - 1):
if not (self.players[k].c_h == self.players[k + 1].c_h and self.players[k + 1].c_p == 0):
self.ifOptimalSolExist = False
# if the Shang and Song (2003) condition satisfied, it runs the algorithm
if self.ifOptimalSolExist == True:
calculations = np.zeros((7, self.config.NoAgent))
for k in range(self.config.NoAgent):
# DL_high
calculations[0][k] = ((self.config.leadRecItemLow + self.config.leadRecItemUp + 2) / 2 \
+ (self.config.leadRecOrderLow + self.config.leadRecOrderUp + 2) / 2) * \
(self.config.demandUp - self.config.demandLow - 1)
if k > 0:
calculations[0][k] += calculations[0][k - 1]
# probability_high
nominator_ch = 0
low_denominator_ch = 0
for j in range(k, self.config.NoAgent):
if j < self.config.NoAgent - 1:
nominator_ch += self.players[j + 1].c_h
low_denominator_ch += self.players[j].c_h
if k == 0:
high_denominator_ch = low_denominator_ch
calculations[2][k] = (self.players[0].c_p +
nominator_ch) / (self.players[0].c_p + low_denominator_ch + 0.0)
# probability_low
calculations[3][k] = (self.players[0].c_p +
nominator_ch) / (self.players[0].c_p + high_denominator_ch + 0.0)
# S_high
calculations[4] = np.round(np.multiply(calculations[0], calculations[2]))
# S_low
calculations[5] = np.round(np.multiply(calculations[0], calculations[3]))
# S_avg
calculations[6] = np.round(np.mean(calculations[4:6], axis=0))
# S', set the base stock values into each agent.
for k in range(self.config.NoAgent):
if k == 0:
self.players[k].bsBaseStock = calculations[6][k]
else:
self.players[k].bsBaseStock = calculations[6][k] - calculations[6][k - 1]
if self.players[k].bsBaseStock < 0:
self.players[k].bsBaseStock = 0
elif self.config.NoAgent == 1:
if self.config.demandDistribution == 0:
self.players[0].bsBaseStock = np.ceil(
self.config.c_h[0] / (self.config.c_h[0] + self.config.c_p[0] + 0.0)
) * ((self.config.demandUp - self.config.demandLow - 1) / 2) * self.config.leadRecItemUp
elif 1 == 1:
f = self.config.f
f_init = self.config.f_init
for k in range(self.config.NoAgent):
self.players[k].bsBaseStock = f[k]
self.players[k].int_bslBaseStock = f_init[k]
def update_OO(self):
for k in range(0, self.config.NoAgent):
if k < self.config.NoAgent - 1:
self.players[k].OO = sum(self.players[k + 1].AO) + sum(self.players[k].AS)
else:
self.players[k].OO = sum(self.players[k].AS)
def doTestMid(self, demandTs):
self.resultTest = []
m = strftime("%Y-%m-%d-%H-%M-%S", gmtime())
self.doTest(m, demandTs)
print("---------------------------------------------------------------------------------------")
resultSummary = np.array(self.resultTest).mean(axis=0).tolist()
result_srdqn = ', '.join(map("{:.2f}".format, resultSummary[0]))
result_rand = ', '.join(map("{:.2f}".format, resultSummary[1]))
result_strm = ', '.join(map("{:.2f}".format, resultSummary[2]))
if self.ifOptimalSolExist:
result_bs = ', '.join(map("{:.2f}".format, resultSummary[3]))
print(
'SUMMARY; {0:s}; ITER= {1:d}; OURPOLICY= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}; BS= [{8:s}]; SUM = {9:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]), result_strm, sum(resultSummary[2]), result_bs,
sum(resultSummary[3])
)
)
else:
print(
'SUMMARY; {0:s}; ITER= {1:d}; OURPOLICY= [{2:s}]; SUM = {3:2.4f}; Rand= [{4:s}]; SUM = {5:2.4f}; STRM= [{6:s}]; SUM = {7:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), self.curGame, result_srdqn, sum(resultSummary[0]),
result_rand, sum(resultSummary[1]), result_strm, sum(resultSummary[2])
)
)
print("=======================================================================================")
def doTest(self, m, demand):
import matplotlib.pyplot as plt
if self.config.ifSaveFigure:
plt.figure(self.curGame, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k')
# self.demand = demand
# use dnn to get output.
Rsltdnn, plt = self.tester(self.config.agentTypes, plt, 'b', 'OurPolicy', m)
baseStockdata = self.players[0].srdqnBaseStock
# # use random to get output.
RsltRnd, plt = self.tester(["rnd", "rnd", "rnd", "rnd"], plt, 'y', 'RAND', m)
# use formual to get output.
RsltStrm, plt = self.tester(["Strm", "Strm", "Strm", "Strm"], plt, 'g', 'Strm', m)
# use optimal strategy to get output, if it works.
if self.ifOptimalSolExist:
if self.config.agentTypes == ["srdqn", "Strm", "Strm", "Strm"]:
Rsltbs, plt = self.tester(["bs", "Strm", "Strm", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "srdqn", "Strm", "Strm"]:
Rsltbs, plt = self.tester(["Strm", "bs", "Strm", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "Strm", "srdqn", "Strm"]:
Rsltbs, plt = self.tester(["Strm", "Strm", "bs", "Strm"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["Strm", "Strm", "Strm", "srdqn"]:
Rsltbs, plt = self.tester(["Strm", "Strm", "Strm", "bs"], plt, 'r', 'Strm-BS', m)
elif self.config.agentTypes == ["srdqn", "rnd", "rnd", "rnd"]:
Rsltbs, plt = self.tester(["bs", "rnd", "rnd", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "srdqn", "rnd", "rnd"]:
Rsltbs, plt = self.tester(["rnd", "bs", "rnd", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "rnd", "srdqn", "rnd"]:
Rsltbs, plt = self.tester(["rnd", "rnd", "bs", "rnd"], plt, 'r', 'RND-BS', m)
elif self.config.agentTypes == ["rnd", "rnd", "rnd", "srdqn"]:
Rsltbs, plt = self.tester(["rnd", "rnd", "rnd", "bs"], plt, 'r', 'RND-BS', m)
else:
Rsltbs, plt = self.tester(["bs", "bs", "bs", "bs"], plt, 'r', 'BS', m)
# hold the results of the optimal solution
self.middleTestResult += [[RsltRnd, RsltStrm, Rsltbs]]
else:
self.middleTestResult += [[RsltRnd, RsltStrm]]
else:
# return the obtained results into their lists
RsltRnd = self.middleTestResult[m][0]
RsltStrm = self.middleTestResult[m][1]
if self.ifOptimalSolExist:
Rsltbs = self.middleTestResult[m][2]
# save the figure
if self.config.ifSaveFigure:
savePlot(self.players, self.curGame, Rsltdnn, RsltStrm, Rsltbs, RsltRnd, self.config, m)
plt.close()
result_srdqn = ', '.join(map("{:.2f}".format, Rsltdnn))
result_rand = ', '.join(map("{:.2f}".format, RsltRnd))
result_strm = ', '.join(map("{:.2f}".format, RsltStrm))
if self.ifOptimalSolExist:
result_bs = ', '.join(map("{:.2f}".format, Rsltbs))
print(
'output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}; BS= [{8:s}]; sum = {9:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), str(str(self.curGame) + "-" + str(m)), result_srdqn,
sum(Rsltdnn), result_rand, sum(RsltRnd), result_strm, sum(RsltStrm), result_bs, sum(Rsltbs)
)
)
self.resultTest += [[Rsltdnn, RsltRnd, RsltStrm, Rsltbs]]
else:
print(
'output; {0:s}; Iter= {1:s}; SRDQN= [{2:s}]; sum = {3:2.4f}; Rand= [{4:s}]; sum = {5:2.4f}; Strm= [{6:s}]; sum = {7:2.4f}'
.format(
strftime("%Y-%m-%d %H:%M:%S", gmtime()), str(str(self.curGame) + "-" + str(m)), result_srdqn,
sum(Rsltdnn), result_rand, sum(RsltRnd), result_strm, sum(RsltStrm)
)
)
self.resultTest += [[Rsltdnn, RsltRnd, RsltStrm]]
return sum(Rsltdnn)
def tester(self, testType, plt, colori, labeli, m):
# set computation type for test
for k in range(0, self.config.NoAgent):
# self.players[k].compTypeTest = testType[k]
self.players[k].compType = testType[k]
# run the episode to get the results.
if labeli != 'OurPolicy':
result = self.playGame(self.demand)
else:
result = [-1 * self.players[i].cumReward for i in range(0, self.config.NoAgent)]
# add the results into the figure
if self.config.ifSaveFigure:
plt = plotting(plt, [np.array(self.players[i].hist) for i in range(0, self.config.NoAgent)], colori, labeli)
if self.config.ifsaveHistInterval and ((self.curGame == 0) or (self.curGame == 1) or (self.curGame == 2) or (self.curGame == 3) or ((self.curGame - 1) % self.config.saveHistInterval == 0)\
or ((self.curGame) % self.config.saveHistInterval == 0) or ((self.curGame) % self.config.saveHistInterval == 1) \
or ((self.curGame) % self.config.saveHistInterval == 2)) :
for k in range(0, self.config.NoAgent):
name = labeli + "-" + str(self.curGame) + "-" + "player" + "-" + str(k) + "-" + str(m)
np.save(os.path.join(self.config.model_dir, name), np.array(self.players[k].hist2))
# save the figure of base stocks
# if self.config.ifSaveFigure and (self.curGame in range(self.config.saveFigInt[0],self.config.saveFigInt[1])):
# for k in range(self.config.NoAgent):
# if self.players[k].compTypeTest == 'dnn':
# plotBaseStock(self.players[k].srdqnBaseStock, 'b', 'base stock of agent '+ str(self.players[k].agentNum), self.curGame, self.config, m)
return result, plt
def playGame(self, demand):
self.resetGame(demand)
# run the game
while self.curTime < self.T:
self.handelAction(np.array(0)) # action won't be used.
self.next()
return [-1 * self.players[i].cumReward for i in range(0, self.config.NoAgent)]