zjowowen's picture
init space
079c32c
from easydict import EasyDict
collector_env_num = 8
evaluator_env_num = 8
nstep = 5
max_env_step = int(10e6)
qbert_ngu_config = dict(
exp_name='qbert_ngu_seed0',
env=dict(
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
env_id='QbertNoFrameskip-v4',
obs_plus_prev_action_reward=True, # use specific env wrapper for ngu policy
stop_value=int(1e6),
frame_stack=4,
),
rnd_reward_model=dict(
intrinsic_reward_type='add',
learning_rate=1e-4,
obs_shape=[4, 84, 84],
action_shape=6,
batch_size=320,
update_per_collect=10,
only_use_last_five_frames_for_icm_rnd=False,
clear_buffer_per_iters=10,
nstep=nstep,
hidden_size_list=[128, 128, 64],
type='rnd-ngu',
),
episodic_reward_model=dict(
# means if using rescale trick to the last non-zero reward
# when combing extrinsic and intrinsic reward.
# the rescale trick only used in:
# 1. sparse reward env minigrid, in which the last non-zero reward is a strong positive signal
# 2. the last reward of each episode directly reflects the agent's completion of the task, e.g. lunarlander
# Note that the ngu intrinsic reward is a positive value (max value is 5), in these envs,
# the last non-zero reward should not be overwhelmed by intrinsic rewards, so we need rescale the
# original last nonzero extrinsic reward.
# please refer to ngu_reward_model for details.
last_nonzero_reward_rescale=False,
# means the rescale value for the last non-zero reward, only used when last_nonzero_reward_rescale is True
# please refer to ngu_reward_model for details.
last_nonzero_reward_weight=1,
intrinsic_reward_type='add',
learning_rate=1e-4,
obs_shape=[4, 84, 84],
action_shape=6,
batch_size=320,
update_per_collect=10,
only_use_last_five_frames_for_icm_rnd=False,
clear_buffer_per_iters=10,
nstep=nstep,
hidden_size_list=[128, 128, 64],
type='episodic',
),
policy=dict(
cuda=True,
on_policy=False,
priority=True,
priority_IS_weight=True,
discount_factor=0.997,
nstep=nstep,
burnin_step=20,
# (int) <learn_unroll_len> is the total length of [sequence sample] minus
# the length of burnin part in [sequence sample],
# i.e., <sequence sample length> = <unroll_len> = <burnin_step> + <learn_unroll_len>
learn_unroll_len=40, # set this key according to the episode length
model=dict(
obs_shape=[4, 84, 84],
action_shape=6,
encoder_hidden_size_list=[128, 128, 512],
collector_env_num=collector_env_num,
),
learn=dict(
update_per_collect=8,
batch_size=64,
learning_rate=0.0005,
target_update_theta=0.001,
),
collect=dict(
# NOTE: It is important that set key traj_len_inf=True here,
# to make sure self._traj_len=INF in serial_sample_collector.py.
# In sequence-based policy, for each collect_env,
# we want to collect data of length self._traj_len=INF
# unless the episode enters the 'done' state.
# In each collect phase, we collect a total of <n_sample> sequence samples.
n_sample=32,
traj_len_inf=True,
env_num=collector_env_num,
),
eval=dict(env_num=evaluator_env_num, ),
other=dict(
eps=dict(
type='exp',
start=0.95,
end=0.05,
decay=1e5,
),
replay_buffer=dict(
replay_buffer_size=int(2e4),
# (Float type) How much prioritization is used: 0 means no prioritization while 1 means full prioritization
alpha=0.6,
# (Float type) How much correction is used: 0 means no correction while 1 means full correction
beta=0.4,
)
),
),
)
qbert_ngu_config = EasyDict(qbert_ngu_config)
main_config = qbert_ngu_config
qbert_ngu_create_config = dict(
env=dict(
type='atari',
import_names=['dizoo.atari.envs.atari_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='ngu'),
rnd_reward_model=dict(type='rnd-ngu'),
episodic_reward_model=dict(type='episodic'),
)
qbert_ngu_create_config = EasyDict(qbert_ngu_create_config)
create_config = qbert_ngu_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial_ngu -c qbert_ngu_config.py -s 0`
from ding.entry import serial_pipeline_ngu
serial_pipeline_ngu([main_config, create_config], seed=0, max_env_step=max_env_step)