|
import torch |
|
|
|
|
|
def value_transform(x: torch.Tensor, eps: float = 1e-2) -> torch.Tensor: |
|
r""" |
|
Overview: |
|
A function to reduce the scale of the action-value function. |
|
:math: `h(x) = sign(x)(\sqrt{(abs(x)+1)} - 1) + \eps * x` . |
|
Arguments: |
|
- x: (:obj:`torch.Tensor`) The input tensor to be normalized. |
|
- eps: (:obj:`float`) The coefficient of the additive regularization term \ |
|
to ensure h^{-1} is Lipschitz continuous |
|
Returns: |
|
- (:obj:`torch.Tensor`) Normalized tensor. |
|
|
|
.. note:: |
|
Observe and Look Further: Achieving Consistent Performance on Atari |
|
(https://arxiv.org/abs/1805.11593) |
|
""" |
|
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x |
|
|
|
|
|
def value_inv_transform(x: torch.Tensor, eps: float = 1e-2) -> torch.Tensor: |
|
r""" |
|
Overview: |
|
The inverse form of value rescale. |
|
:math: `h^{-1}(x) = sign(x)({(\frac{\sqrt{1+4\eps(|x|+1+\eps)}-1}{2\eps})}^2-1)` . |
|
Arguments: |
|
- x: (:obj:`torch.Tensor`) The input tensor to be unnormalized. |
|
- eps: (:obj:`float`) The coefficient of the additive regularization term \ |
|
to ensure h^{-1} is Lipschitz continuous |
|
Returns: |
|
- (:obj:`torch.Tensor`) Unnormalized tensor. |
|
""" |
|
return torch.sign(x) * (((torch.sqrt(1 + 4 * eps * (torch.abs(x) + 1 + eps)) - 1) / (2 * eps)) ** 2 - 1) |
|
|
|
|
|
def symlog(x: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Overview: |
|
A function to normalize the targets. |
|
:math: `symlog(x) = sign(x)(\ln{|x|+1})` . |
|
Arguments: |
|
- x: (:obj:`torch.Tensor`) The input tensor to be normalized. |
|
Returns: |
|
- (:obj:`torch.Tensor`) Normalized tensor. |
|
|
|
.. note:: |
|
Mastering Diverse Domains through World Models |
|
(https://arxiv.org/abs/2301.04104) |
|
""" |
|
return torch.sign(x) * (torch.log(torch.abs(x) + 1)) |
|
|
|
|
|
def inv_symlog(x: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Overview: |
|
The inverse form of symlog. |
|
:math: `symexp(x) = sign(x)(\exp{|x|}-1)` . |
|
Arguments: |
|
- x: (:obj:`torch.Tensor`) The input tensor to be unnormalized. |
|
Returns: |
|
- (:obj:`torch.Tensor`) Unnormalized tensor. |
|
""" |
|
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1) |
|
|