|
from typing import List, Dict, Any, Tuple, Union |
|
import torch |
|
import copy |
|
|
|
from ding.torch_utils import Adam, to_device |
|
from ding.rl_utils import dist_nstep_td_data, dist_nstep_td_error, get_train_sample, get_nstep_return_data |
|
from ding.model import model_wrap |
|
from ding.utils import POLICY_REGISTRY |
|
from ding.utils.data import default_collate, default_decollate |
|
from .dqn import DQNPolicy |
|
from .common_utils import default_preprocess_learn |
|
|
|
|
|
@POLICY_REGISTRY.register('rainbow') |
|
class RainbowDQNPolicy(DQNPolicy): |
|
r""" |
|
Overview: |
|
Rainbow DQN contain several improvements upon DQN, including: |
|
- target network |
|
- dueling architecture |
|
- prioritized experience replay |
|
- n_step return |
|
- noise net |
|
- distribution net |
|
|
|
Therefore, the RainbowDQNPolicy class inherit upon DQNPolicy class |
|
|
|
Config: |
|
== ==================== ======== ============== ======================================== ======================= |
|
ID Symbol Type Default Value Description Other(Shape) |
|
== ==================== ======== ============== ======================================== ======================= |
|
1 ``type`` str rainbow | RL policy register name, refer to | this arg is optional, |
|
| registry ``POLICY_REGISTRY`` | a placeholder |
|
2 ``cuda`` bool False | Whether to use cuda for network | this arg can be diff- |
|
| erent from modes |
|
3 ``on_policy`` bool False | Whether the RL algorithm is on-policy |
|
| or off-policy |
|
4 ``priority`` bool True | Whether use priority(PER) | priority sample, |
|
| update priority |
|
5 ``model.v_min`` float -10 | Value of the smallest atom |
|
| in the support set. |
|
6 ``model.v_max`` float 10 | Value of the largest atom |
|
| in the support set. |
|
7 ``model.n_atom`` int 51 | Number of atoms in the support set |
|
| of the value distribution. |
|
8 | ``other.eps`` float 0.05 | Start value for epsilon decay. It's |
|
| ``.start`` | small because rainbow use noisy net. |
|
9 | ``other.eps`` float 0.05 | End value for epsilon decay. |
|
| ``.end`` |
|
10 | ``discount_`` float 0.97, | Reward's future discount factor, aka. | may be 1 when sparse |
|
| ``factor`` [0.95, 0.999] | gamma | reward env |
|
11 ``nstep`` int 3, | N-step reward discount sum for target |
|
[3, 5] | q_value estimation |
|
12 | ``learn.update`` int 3 | How many updates(iterations) to train | this args can be vary |
|
| ``per_collect`` | after collector's one collection. Only | from envs. Bigger val |
|
| valid in serial training | means more off-policy |
|
== ==================== ======== ============== ======================================== ======================= |
|
|
|
""" |
|
|
|
config = dict( |
|
|
|
type='rainbow', |
|
|
|
cuda=False, |
|
|
|
on_policy=False, |
|
|
|
priority=True, |
|
|
|
priority_IS_weight=True, |
|
|
|
|
|
model=dict( |
|
|
|
|
|
v_min=-10, |
|
|
|
|
|
v_max=10, |
|
|
|
|
|
n_atom=51, |
|
), |
|
|
|
discount_factor=0.99, |
|
|
|
nstep=3, |
|
learn=dict( |
|
|
|
|
|
|
|
|
|
update_per_collect=1, |
|
batch_size=32, |
|
learning_rate=0.001, |
|
|
|
|
|
|
|
|
|
target_update_freq=100, |
|
|
|
ignore_done=False, |
|
), |
|
|
|
collect=dict( |
|
|
|
|
|
|
|
unroll_len=1, |
|
), |
|
eval=dict(), |
|
|
|
other=dict( |
|
|
|
eps=dict( |
|
|
|
type='exp', |
|
|
|
start=0.05, |
|
|
|
end=0.05, |
|
|
|
decay=100000, |
|
), |
|
replay_buffer=dict( |
|
|
|
replay_buffer_size=100000, |
|
|
|
alpha=0.6, |
|
|
|
|
|
beta=0.4, |
|
|
|
anneal_step=100000, |
|
) |
|
), |
|
) |
|
|
|
def default_model(self) -> Tuple[str, List[str]]: |
|
return 'rainbowdqn', ['ding.model.template.q_learning'] |
|
|
|
def _init_learn(self) -> None: |
|
r""" |
|
Overview: |
|
Init the learner model of RainbowDQNPolicy |
|
|
|
Arguments: |
|
- learning_rate (:obj:`float`): the learning rate fo the optimizer |
|
- gamma (:obj:`float`): the discount factor |
|
- nstep (:obj:`int`): the num of n step return |
|
- v_min (:obj:`float`): value distribution minimum value |
|
- v_max (:obj:`float`): value distribution maximum value |
|
- n_atom (:obj:`int`): the number of atom sample point |
|
""" |
|
self._priority = self._cfg.priority |
|
self._priority_IS_weight = self._cfg.priority_IS_weight |
|
self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate) |
|
self._gamma = self._cfg.discount_factor |
|
self._nstep = self._cfg.nstep |
|
self._v_max = self._cfg.model.v_max |
|
self._v_min = self._cfg.model.v_min |
|
self._n_atom = self._cfg.model.n_atom |
|
|
|
self._target_model = copy.deepcopy(self._model) |
|
self._target_model = model_wrap( |
|
self._target_model, |
|
wrapper_name='target', |
|
update_type='assign', |
|
update_kwargs={'freq': self._cfg.learn.target_update_freq} |
|
) |
|
self._learn_model = model_wrap(self._model, wrapper_name='argmax_sample') |
|
self._learn_model.reset() |
|
self._target_model.reset() |
|
|
|
def _forward_learn(self, data: dict) -> Dict[str, Any]: |
|
""" |
|
Overview: |
|
Forward and backward function of learn mode, acquire the data and calculate the loss and\ |
|
optimize learner model |
|
|
|
Arguments: |
|
- data (:obj:`dict`): Dict type data, including at least ['obs', 'next_obs', 'reward', 'action'] |
|
|
|
Returns: |
|
- info_dict (:obj:`Dict[str, Any]`): Including cur_lr and total_loss |
|
- cur_lr (:obj:`float`): current learning rate |
|
- total_loss (:obj:`float`): the calculated loss |
|
""" |
|
data = default_preprocess_learn( |
|
data, |
|
use_priority=self._priority, |
|
use_priority_IS_weight=self._cfg.priority_IS_weight, |
|
ignore_done=self._cfg.learn.ignore_done, |
|
use_nstep=True |
|
) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
|
|
|
|
|
|
self._learn_model.train() |
|
self._target_model.train() |
|
|
|
self._reset_noise(self._learn_model) |
|
self._reset_noise(self._target_model) |
|
q_dist = self._learn_model.forward(data['obs'])['distribution'] |
|
with torch.no_grad(): |
|
target_q_dist = self._target_model.forward(data['next_obs'])['distribution'] |
|
self._reset_noise(self._learn_model) |
|
target_q_action = self._learn_model.forward(data['next_obs'])['action'] |
|
value_gamma = data.get('value_gamma', None) |
|
data = dist_nstep_td_data( |
|
q_dist, target_q_dist, data['action'], target_q_action, data['reward'], data['done'], data['weight'] |
|
) |
|
loss, td_error_per_sample = dist_nstep_td_error( |
|
data, self._gamma, self._v_min, self._v_max, self._n_atom, nstep=self._nstep, value_gamma=value_gamma |
|
) |
|
|
|
|
|
|
|
self._optimizer.zero_grad() |
|
loss.backward() |
|
self._optimizer.step() |
|
|
|
|
|
|
|
self._target_model.update(self._learn_model.state_dict()) |
|
return { |
|
'cur_lr': self._optimizer.defaults['lr'], |
|
'total_loss': loss.item(), |
|
'priority': td_error_per_sample.abs().tolist(), |
|
} |
|
|
|
def _init_collect(self) -> None: |
|
r""" |
|
Overview: |
|
Collect mode init moethod. Called by ``self.__init__``. |
|
Init traj and unroll length, collect model. |
|
|
|
.. note:: |
|
the rainbow dqn enable the eps_greedy_sample, but might not need to use it, \ |
|
as the noise_net contain noise that can help exploration |
|
""" |
|
self._unroll_len = self._cfg.collect.unroll_len |
|
self._nstep = self._cfg.nstep |
|
self._gamma = self._cfg.discount_factor |
|
self._collect_model = model_wrap(self._model, wrapper_name='eps_greedy_sample') |
|
self._collect_model.reset() |
|
|
|
def _forward_collect(self, data: dict, eps: float) -> dict: |
|
r""" |
|
Overview: |
|
Reset the noise from noise net and collect output according to eps_greedy plugin |
|
|
|
Arguments: |
|
- data (:obj:`Dict[str, Any]`): Dict type data, stacked env data for predicting policy_output(action), \ |
|
values are torch.Tensor or np.ndarray or dict/list combinations, keys are env_id indicated by integer. |
|
- eps (:obj:`float`): epsilon value for exploration, which is decayed by collected env step. |
|
Returns: |
|
- output (:obj:`Dict[int, Any]`): Dict type data, including at least inferred action according to input obs. |
|
ReturnsKeys |
|
- necessary: ``action`` |
|
""" |
|
data_id = list(data.keys()) |
|
data = default_collate(list(data.values())) |
|
if self._cuda: |
|
data = to_device(data, self._device) |
|
self._collect_model.eval() |
|
self._reset_noise(self._collect_model) |
|
with torch.no_grad(): |
|
output = self._collect_model.forward(data, eps=eps) |
|
if self._cuda: |
|
output = to_device(output, 'cpu') |
|
output = default_decollate(output) |
|
return {i: d for i, d in zip(data_id, output)} |
|
|
|
def _get_train_sample(self, traj: list) -> Union[None, List[Any]]: |
|
r""" |
|
Overview: |
|
Get the trajectory and the n step return data, then sample from the n_step return data |
|
|
|
Arguments: |
|
- traj (:obj:`list`): The trajactory's buffer list |
|
|
|
Returns: |
|
- samples (:obj:`dict`): The training samples generated |
|
""" |
|
data = get_nstep_return_data(traj, self._nstep, gamma=self._gamma) |
|
return get_train_sample(data, self._unroll_len) |
|
|
|
def _reset_noise(self, model: torch.nn.Module): |
|
r""" |
|
Overview: |
|
Reset the noise of model |
|
|
|
Arguments: |
|
- model (:obj:`torch.nn.Module`): the model to reset, must contain reset_noise method |
|
""" |
|
for m in model.modules(): |
|
if hasattr(m, 'reset_noise'): |
|
m.reset_noise() |
|
|